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ABSTRACT

The Ground-based Wide-Angle Camera array (GWAC), a part of the SVOM space

mission, will search for optical transients of various types by continuously imaging a

field-of-view (FOV) of 5000 degrees2 in every 15 seconds. Each exposure consists of

36⇥4k⇥4k pixels, typically resulting in 36⇥ ⇠175,600 extracted sources. For a modern

time-domain astronomy project like GWAC, which produces massive amounts of data

with a high cadence, it is a challenge to search for short-timescale transients in both

real time and archived data, and to build long-term light curves for variable sources.

Here we develop a high-cadence high-density light curve pipeline (HCHDLP) to pro-

cess the GWAC data in real time, and design a distributed shared-nothing database to

manage the massive amount of archived data, which will be used to generate a source

catalogue with more than 100 billion records during ten years of operation. First, we

develop HCHDLP based on the column-store DBMS of MonetDB, taking advantage

of MonetDB’s high performance when applied to massive data processing. To realize

the real time functionality of HCHDLP, we optimize the pipeline in its source associ-

ation function, including both time and space complexity from outside the database

(SQL semantic) and inside (RANGE JOIN implementation), as well as in its strategy

of building complex light curves. The optimized source association function is ac-

celerated by three orders of magnitude. Second, we build a distributed database, using

a two-level time partitioning strategy via the MERGE TABLE and REMOTE TABLE

technology of MonetDB. Intensive tests validate that our database architecture is able
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to achieve both linear scalability in response time and concurrent access by multiple

users. In summary, our studies provide guidance for a solution to GWAC in real-time

data processing and management of massive data.

Subject headings: source identification, query optimization, astronomical database, light

curve pipeline

1. Introduction

1.1. GWAC scientific goals and data challenges

The Ground-based Wide-Angle Camera array (GWAC) is a set of ground based instruments

under the framework of the SVOM mission. SVOM is a Chinese-French space mission dedicated to

detecting gamma-ray bursts (GRBs), which has been funded by CNSA (the China National Space

Administration) and CNES (the Centre National d’Etudes Spatiales) and is planning to launch

in 2021(Cordier et al. 2015). GWAC is designed to comprise of 36 cameras, each with an 18 cm

diameter and 12.8⇥12.8 degrees2 field of view. The 36 cameras will point to the sky in di↵erent

directions, and totally cover an area of more than 5000 deg2. Each camera will take an image once

every 15 seconds [10 second exposure plus 5 second readout]. GWAC will monitor simultaneously

an area of sky within the field of view of ECLAIRs (Cordier et al. 2015), so that GWAC has

the potential to catch the prompt optical emission of GRBs. Besides monitoring GRBs, GWAC

is also able to search for other optical transients such as supernova and optical counterparts of

gravitational-wave bursts.

Thanks to GWAC’s 15 s exposure and large FOV, GWAC can also provide light curves with

high time resolution of millions of objects in a long time scale. A light curve is a time series of

light intensity, representing the magnitude of a celestial object or region, as a function of time.

In light curve analysis we are interested in variable objects during periods that they show drastic

changes. The huge data in the form of light curves will be used not only for studying variable stars,

but also for searching for transient phenomena, such as short time-scale gravitational microlensing

events and transits by extrasolar planets. It is worthy of attention that gravitational microlensing

events with time scales of less than several hours are unique candidates for searching for interstellar

dark objects, for example, free-floating planets. The large amounts of data representing the source

catalogue and light curves produced by GWAC are an important motivation for our data analysis

system.

To generate the light curves, the GWAC light curve processing system will face stringent

demands on data cadence and the rate of data acquisition of GWAC. One GWAC camera will

capture an image every 15 seconds. The source extraction and subsequent light curve processing

of each image should be finished in a time frame of 15 seconds. This is due to the fact that

the short time-scale observing objects, such as the microlensing events, need to be
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discovered by analyzing light curve data in real time. The data rate of each camera is

⇠12,000 source measurements (2.4 MB) per second, which means the total data rate is 85 MB/s

for the whole GWAC array system. GWAC will produce ⇠ 2.7 TB catalogues data per day, and ⇠
9 PB over the designed 10-years of operation.

1.2. Comparison with other surveys.

The massive catalogue and light curves data produced by GWAC drives us to use relational

databases to realize data manipulation and query, which is a popular solution for similar modern

time-domain survey projects.

Distributed relational database systems (RDBMS) are widely used to manage large scale ob-

servational data produced by large aperture wide-field surveys, such as Pan-STARRS and LSST.

Pan-STARRS (Kaiser et al. 2002; Burgett 2012) is designed to collect data at a rate of 3 ⇠ 10

terabyte (TB) per night. The observed data of Pan-STARRS are managed in a distributed rela-

tional Microsoft SQL server database, which is spatially partitioned into slice databases using a

hash function over the spatial location (RA and DEC) of each detection (Simmhan et al. 2011).

The raw imaging data of LSST is expected to be about 15 TB per night (Ivezic et al. 2008). Over

the ten years of LSST survey operations, LSST will result in over 50 PB for the catalogue databases

(Jurić et al. 2015). To manage the massive amount of astronomical catalogue, LSST developed a

special distributed shared-nothing SQL database query system, called Qserv, which is independent

of a particular RDBMS (Wang et al. 2011; Becla et al. 2013; Becla and Wang 2014).

In addition to managing the large amount of observational data, the RDBMSs also play an

important role in the data processing pipeline of radio transient search projects (Norris 2010),

such as VAST (Variables and Slow Transients) of Australian Square Kilometer Array Pathfinder

(Murphy et al. 2013) and LOFAR (the LOw-Frequency ARray) (Van Haarlem et al. 2013). The

transient processing of VAST is implemented as a real-time pipeline, which employs PostgreSQL

database with Q3C (Koposov and Bartunov) plugin to optimise coordinate searches and cross-

matches (Banyer et al. 2012). Its source data rate is ⇠ 12,000 source measurements per second.

The transient pipeline TraP (Scheers 2009; Swinbank et al. 2015) of LOFAR is implemented in real-

time processing, which is developed on the column-store database MonetDB (Scheers et al. 2012)
1. Its source data rate is ⇠10-10,000/sec. Pioneering the columns-store technology (Abadi et al.

2013) since 1993, MonetDB has achieved significant speedup compared to traditional databases by

innovations at all layers of a DBMS (Idreos et al. 2012, 2007; Manegold et al. 2009). In column-store,

queries only touch the relevant columns, and when in contiguous memory it allows compression

and good cache-hit ratios. Furthermore, MonetDB’s kernel is a programmable relational algebra

machine operating on “array”-like structures, exactly what CPUs are good at. Thanks to the

1Centrum Wiskunde and Informatica (CWI), the Netherlands. www.monetdb.org
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high performance computing capability provided by the MonetDB database, the TraP pipeline has

successfully realized transient search and light curve generation in real time through technology of

table driven logic of MonetDB.

The success of LOFAR motivates us to employ MonetDB as the database platform for the

GWAC high cadence high density light curve pipeline (HCHDLP), because the scientific goal and

data processing strategy of GWAC are similar to those of LOFAR. This satisfies one of Jim Grays

laws: large-scale scientific database should bring computations to data, rather than data to compu-

tations (Gray et al. 2005). In addition, the latest distributed technology of MonetDB (see discussion

in §3) can support distributed data architecture, which suits our long term data storage and query.

HCHDLP of GWAC is not based on the heritage of either Qserv of LSST or Pan-

STARRS because they are not using database-centric computing approaches for their

dynamic pipelines during data production.

The organization of the paper is as follows: Section 2 describes the overview of HCHDLP and

optimization techniques to achieve real-time performance for each camera. In section 3, we design

a shared-nothing distributed database on top of the GWAC camera array. In section 4, we present

the evaluation of the light curve pipeline in terms of functionality and performance. We discuss

future research directions in section 5.

2. MonetDB-based HCHDLP

Two main goals of the HCHDLP are: 1) to manage a catalogue that contains all the individual

measurements of the sources observed by GWAC. 2) to create cumulative light curves to study

variable sources and transients (microlensing events etc.) in real-time.

We design the HCHDLP based on the following requirements and constraints of GWAC: Firstly,

the total processing time of an image should not exceed the time between two subsequent images, i.e.

15 seconds. Secondly, the data rate needed to be processed by HCHDLP is ⇠ 12,000 sources/sec.

Finally, the design of HCHDLP should satisfy the boundary conditions given by the scientific

requirements and hardware architecture.

The GWAC hardware architecture is illustrated in Figure 1. There are 9 mounts totally, and

each mount consists of 4 CCD cameras, where each camera uses a dedicated database server. The

HCHDLP database is temporary; the long-term database is a distributed shared-nothing database,

which is illustrated in Figure 6 in §3.

https://www.researchgate.net/publication/1957841_Scientific_Data_Management_in_the_Coming_Decade?el=1_x_8&enrichId=rgreq-11e0f57888eab31716f1d59338cf049e-XXX&enrichSource=Y292ZXJQYWdlOzMwMzU4MTg3OTtBUzozNjY1NzQwMzc5NDYzNjhAMTQ2NDQwOTQ2OTEwMg==
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Fig. 1.— GWAC telescope array and its computing cluster, in which each CCD (telescope) has

a dedicated database server, e.g., CCD1 has an accompanying database server displayed in white,

and so on. The HCHDLP database is temporary where the bulk of in-database processing takes

place to achieve real-time data processing, with only limited disk capacity. The catalogue and light

curve production of the temporary database will be periodically exported to a long-term archival

catalogue database. The long-term database is a distributed shared-nothing database illustrated

in Figure 6.

The data flowchart of GWAC is shown in Figure 2. The input to HCHDLP is a stream of

catalogue data after image preprocessing, quality control, source extraction and flux calibration

of pipeline 0. Firstly, the CCD reductions and astrometry calibration are processed in the image

preprocessing. Then, the quality control filters out the bad quality image according to star profiles,

star numbers and astrometry accuracy. After quality control, the images of good quality are taken

to source extraction procedure. Then, zone ID and Cartesian coordinates are calculated from

equatorial coordinates. Finally, the flux calibration is carried out through comparison to standard

stars in the same frame. The standard stars are referenced from the UCAC4 catalogue (Zacharias

et al. 2013). The resulting source attributes of the final calibrated catalogue are listed in table 1.

All sources are in the form of point-like sources and will be loaded into the target table in Figure

3.

https://www.researchgate.net/publication/233982279_The_fourth_US_naval_observatory_ccd_astrograph_catalog_UCAC4?el=1_x_8&enrichId=rgreq-11e0f57888eab31716f1d59338cf049e-XXX&enrichSource=Y292ZXJQYWdlOzMwMzU4MTg3OTtBUzozNjY1NzQwMzc5NDYzNjhAMTQ2NDQwOTQ2OTEwMg==
https://www.researchgate.net/publication/233982279_The_fourth_US_naval_observatory_ccd_astrograph_catalog_UCAC4?el=1_x_8&enrichId=rgreq-11e0f57888eab31716f1d59338cf049e-XXX&enrichSource=Y292ZXJQYWdlOzMwMzU4MTg3OTtBUzozNjY1NzQwMzc5NDYzNjhAMTQ2NDQwOTQ2OTEwMg==
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Name Type Description

ID long int Every inserted source/measurement gets a unique id, generated by the

source extraction procedure.

imageid int The reference ID to the image from which this sources was extracted.

zone smallint The zone ID in which a source declination resides, calculated by the

source extraction procedure..

ra double Right ascension of the a source (J2000 degrees), calculated by the source

extraction procedure.

dec double Declination of a source (J2000 degrees). as above.

mag double The magnitude of a source.

mag err double The error of magnitude.

pixel x double The instrumental position of s source on CCD along x.

pixe y double The instrumental position of s source on CCD along y.

ra err double The 1-sigma error on ra (degrees).

dec err double The 1-sigma error on declination (degrees).

x double Cartesian coordinates representation of RA and declination, calculated

by the source extractor procedure.

y double Cartesian coordinates representation of RA and declination, as above.

z double Cartesian coordinates representation of RA and declination, as above.

flux double The flux measurements of a source, calculated from the mag value.

flux err double The flux error of a source.

calmag double calibrated mag.

flag int The source extraction uses a flag for a source to tell for instance if an

object has been truncated at the edge of the image.

background double The source extraction estimates the background of the image.

threshold double The threshold indicates the level from which the source extraction should

start treating pixels as if they were part of objects.

ellipticity double Ellipticity is how stretched the object is.

class star double The source extractions classification of the objects.

Table 1: Measured attributes of each source.
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Fig. 2.— The data flowchart of the GWAC. After the preceding “source extraction” module is

applied, detections and measurements related to celestial objects in the images are extracted into

catalogue files. In the last procedure of pipeline 0, flux calibration is carried out through

comparison to standard stars in the same fields. The standard stars are selected from

the UCAC4 catalogue. Then in the HCHDLP phase, the catalogue files are inserted into the

HCHDLP database, where they are associated with an existing sky-model uniqcatalog table one by

one to form light curves.

The HCHDLP consists of two procedures, i.e., data loading, and source association & light-

curve creation. In order to load large amounts of data quickly, binary bulk loading is adopted

to ingest the point-like source catalogues into MonetDB using a parallel data insertion command.

The source association identifies every source detected by GWAC, and concatenate all current and

archived measurements of each identified source in time series, resulting in the light curves.

Due to the high cadence, a lot of the data processing is shipped to the database engine.

Database algorithms take care of source associations. Figure 3 shows the ERD (Entity Relationship

Diagram) of five key tables and their one to many relationships.
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Fig. 3.— Simplified Database Schema.

It is worth noting that the measured coordinates of sources are taking two forms simultane-

ously: two components in the form of spherical coordinates representing R.A. and DEC and three

components of Cartesian coordinates in the form of unit vectors representing x,y, z, in order to save

time during complicated source association calculations.

In practice, when a new source is loaded into the target table, it is assigned a new permanent

ID ID target by primary key as its unique identifier. Then the new source is associated with

previous records of sources in the uniquecatalog table, in which each source has been assigned an

ID uniq . If the new source is a good match with a record in uniquecatalog , the associated IDs of

ID target and ID uniq are appended into the association table associatedsource which is a de-facto

light curve table. If the match failed a new record is created in uniquecatalog. The related auxiliary

information is recorded in the table image and skyarea.

An association pair is acceptable if the angular distance between the two sources is smaller

than a given tolerance radius. Generally speaking, the choice of the tolerance radius is mainly based

on the uncertainty of the astrometry calibration. However, for the GWAC system, due to its large

pixel scale of ⇠12 arcsecond per pixel ), the crosstalk between sources shall be a problem when

getting positions of these sources in the CCD image, especially for those objects with low signal to

noise ratio (Dudik et al. 2012). In these sub-sampled images, the point spread function (PSF) of the

sources would be relatively stable since it is less sensitive to variation of the environment, like the

seeing or temperature . Thus, in our practical experiments, 2.5 pixels , which is ⇠1.4 times of the

typical PSF value (⇠1.8 pixels), is a proper choice for GWAC images when doing the cross-match.

From our analysis, the mismatch rate is ⇠ 0.05% (considering the flux constraint)

with our above tolerance radius, while the mismatch rate is <0.1% if not considering

https://www.researchgate.net/publication/225053764_Interpixel_crosstalk_in_Teledyne_Imaging_Sensors_H4RG-10_detectors?el=1_x_8&enrichId=rgreq-11e0f57888eab31716f1d59338cf049e-XXX&enrichSource=Y292ZXJQYWdlOzMwMzU4MTg3OTtBUzozNjY1NzQwMzc5NDYzNjhAMTQ2NDQwOTQ2OTEwMg==
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the flux constraint. This mismatch rate is acceptable for GWAC taking into account

the balance with data processing speed. Additionally, the color constraint in cross-match

can be ignored since all the data used for the association are acquired from same camera and same

band.

The HCHDLP database uses the popular zone algorithm (Gray et al. 2007) to speed up pro-

cessing. Its basic idea is to map a sphere into equally spaced declination zones. With the filter of

ZoneID, the strength of the zone algorithm is from its simplicity and the locality it produces: a zone

only has two neighbours when matching two datasets. We only need to look for matches within the

same ZoneID and its neighbours. The optimal zone height is set to the value of tolerance radius.

Either a “tall” or “short” zone heights will cause more neighbors that need to be joined with the

center zone. These extra areas add extra costs that outweigh the savings in pair-wise comparisons

(Gray et al. 2004). The search radius can be easily set at any time as an input parameter of the

association function.

2.1. Optimization of source association

A straightforward zone-based source association query that joins two tables by using the Eu-

clidean distance would run for a very long time on high cardinality datasets. Among all the

relational algebra operators in the association, the Join operator is the most expensive one. In the

Join operation, each zone in the left reference table “uniquecatalog” needs to be compared with

all the zone values in the right “target” table one by one. The zone search results must be further

reduced by an ra filter of the Alpha(theta, decl) computation. The inflated radius Alpha function

can compute the limiting ra ranges of points in all regions both near the equator and near the

poles (see details in (Gray et al. 2007)). Then a quick filter on dec is tested and finally a careful

Euclidean distance is computed. The time complexity of this operation is O(n2). For example, this

straightforward query takes several hours to associate two tables each with ⇠175,600 tuples. The

SQL extract below is the straightforward source association query.

SELECT u0.id AS uniqueid, ...

, t0.id AS targetid, ...

3600*DEGREES(2*ASIN(SQRT( (u0.x-t0.x) * (u0.x-t0.x)+(u0.y-t0.y)*(u0.y-t0.y)+

(u0.z-t0.z) * (u0.z-t0.z))/2)) AS distance_arcsec

FROM uniquecatalog as u0, targets as t0

WHERE u0.zone BETWEEN cast(floor((t0."dec" - radius )/ zoneheig) as integer)

AND cast(floor((t0."dec" + radius )/ zoneheig) as integer)

AND u0.ra_avg between t0.ra - alpha(t0."dec", radius) and t0.ra + alpha(t0."dec", radius)

AND u0.decl_avg between t0."dec" - radius and t0."dec" + radius

AND u0.x*t0.x+u0.y*t0.y+u0.z*t0.z > cos(radians(radius));

https://www.researchgate.net/publication/1960626_The_Zones_Algorithm_for_Finding_Points-Near-a-Point_or_Cross-Matching_Spatial_Datasets?el=1_x_8&enrichId=rgreq-11e0f57888eab31716f1d59338cf049e-XXX&enrichSource=Y292ZXJQYWdlOzMwMzU4MTg3OTtBUzozNjY1NzQwMzc5NDYzNjhAMTQ2NDQwOTQ2OTEwMg==
https://www.researchgate.net/publication/1960626_The_Zones_Algorithm_for_Finding_Points-Near-a-Point_or_Cross-Matching_Spatial_Datasets?el=1_x_8&enrichId=rgreq-11e0f57888eab31716f1d59338cf049e-XXX&enrichSource=Y292ZXJQYWdlOzMwMzU4MTg3OTtBUzozNjY1NzQwMzc5NDYzNjhAMTQ2NDQwOTQ2OTEwMg==
https://www.researchgate.net/publication/1957370_There_Goes_the_Neighborhood_Relational_Algebra_for_Spatial_Data_Search?el=1_x_8&enrichId=rgreq-11e0f57888eab31716f1d59338cf049e-XXX&enrichSource=Y292ZXJQYWdlOzMwMzU4MTg3OTtBUzozNjY1NzQwMzc5NDYzNjhAMTQ2NDQwOTQ2OTEwMg==
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To significantly reduce the long time required for source association, we optimized the associ-

ation for both time and space complexity by two means: from outside the database (SQL clauses)

and inside the databases (query optimizer).

From outside database engine, in a SQL perspective, since the sources stored in the table target

are unordered, this is also true for the zoneid column, which leads to the zoneid lookup being a

random access pattern. In case that the randomly accessed data are too large for the CPU caches,

the random access will cause cache misses and performance degradation (Boncz et al. 1999). For

this reason, we create a sorted version of the inner relation uniquecatalog ordered by the predicate

column “zone” to mimic a clustered index before the join phase:

CREATE TABLE u0_zone AS SELECT * FROM uniquecatalog ORDER BY zone with data.

This has the advantage of scanning the outer relation sequentially. The time complexity of sorting

the outer relation is O(nlogn), where n is the size of the outer relation.

To reduce the amount of calculation and the space complexity, we use the standard SQL

“WITH” clause, to simplify complex SQL by materializing subqueries, which saves the MonetDB

from recomputing multiple times. Although both the “WITH” clause and a temporary table can

improve query speed for complex subqueries, the former has some advantages over the latter : 1)

“WITH” queries are treated as inline views without extra e↵ort to remove the temporary tables

after usage; and 2) WITH supports multiple subquery and mutual references between subqueries.

WITH allows assigning a name to a subquery block. This name can be referenced in multiple places

in the main query or even in the following WITH subquery. By using WITH clauses, we materialize

the intermediate results target.“dec00 � radius as decmin and target.“dec00 + radius as decmax.

The derived decmin/decmax are used in the next “WITH” subquery to compute the zone range:

decmin/zoneHeight as zonemin and decmax/zoneHeight as zonemax. Zonemin and zonemax

together define a zone range. The search radius can be flexibly changed according to the various

di↵erent sky region. The core SQL extract of associates operator is listed below. Our test

(§4.3.1) shows that the “WITH” optimization can bring the source association procedure for two

tables with 175,597 rows ⇥ 175,540 rows from resource exhaustion (running out of disk space) to

4m 2s.

CREATE FUNCTION Alpha(theta double, decl double) returns double

BEGIN

IF abs(decl)+theta > 89.9 then return cast(180.0 as double);

ELSE

RETURN (degrees(abs(atan(sin(radians(theta)) /

sqrt(abs( cos(radians(decl-theta))

* cos(radians(decl+theta))

) ) ) ) ));

END IF;

END;



– 11 –

CREATE FUNCTION associates(imageno int, radius double)

RETURNS TABLE (uniqueid bigint, targetid bigint, distance_arcsec double...)

BEGIN

DECLARE TABLE u0_zone (LIKE uniquecatalog);

DECLARE zoneheig double;

SET zoneheig=1e1/3600;

INSERT INTO u0 zone SELECT id,targetid,... FROM uniquecatalog ORDER BY zone;
RETURN TABLE(SELECT uniqueid,targetid,distance_arcsec...FROM (

WITH x as (SELECT target.id,

target."dec" - radius as decmin,
target."dec" + radius as decmax, ...

FROM target4 as target

WHERE target.imageid = imageno),

smallt as (select x.id, x.decmin, x.decmax,

cast(floor( x.decmin / zoneheig) as integer) as zonemin,

cast(floor( x.decmax / zoneheig) as integer) as zonemax, ...

FROM x)

SELECT u0.id as uniqueid,t0.id as targetid ....

FROM u0 zone as u0, smallt as t0
--The ‘‘implicit join notation’’ using commas to separate tables

--and the CROSS JOIN are semantically identical.

WHERE u0.zone BETWEEN zonemin AND zonemax

AND u0.ra_avg BETWEEN t0.ra-alpha(t0."dec", radius) AND t0.ra+alpha(t0."dec", radius)

AND u0.decl_avg BETWEEN t0.decmin AND t0.decmax

AND u0.x*t0.x+u0.y*t0.y+u0.z*t0.z > cos(radians(radius))

) AS ut);

end;

From inside the database engine, the optimization of database implementation can speedup a

RANGE-JOIN significantly. There are three expensive “range-joins” predicates in the above asso-

ciates function i.e., the three BETWEEN...AND in WHERE clause. RANGE-JOINs are queries

with inequality predicates (greater than, less than, or between) on which a column from the left

table is restricted to be in a range specified by two columns of the right table. Because the condition

with the highest discarding rate is a RANGE-JOIN on the zone column, it should be given high

priority in terms of optimization.

We have optimized the RANGE-JOIN implementation of the MonetDB by employing a quick

binary search and compressed imprints index. The optimization has been introduced specially for

this work, however, it is generally applicable for all similar types of queries. The imprints index

is already available in MonetDB but was not applied to RANGE-JOIN operations. This work has

extended the imprints index to also work with RANGE-JOINs. (Sidirourgos and Kersten 2013)

developed a novel cache-conscious secondary index structure called imprints to speed up scans

https://www.researchgate.net/publication/262247664_Column_imprints_A_secondary_index_structure?el=1_x_8&enrichId=rgreq-11e0f57888eab31716f1d59338cf049e-XXX&enrichSource=Y292ZXJQYWdlOzMwMzU4MTg3OTtBUzozNjY1NzQwMzc5NDYzNjhAMTQ2NDQwOTQ2OTEwMg==
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over large tables stored in MonetDB. It is designed such that any clustering or partial ordering is

naturally exploited without the need for extra parametrization. If the left column is sorted, we

use binary search, which allows the majority of the table to be skipped to reduce join time by

orders of magnitude instead of “brute-force” for large tables. Figure 4 illustrates an example of the

binary search optimization. The table u0 zone with a column zone, joins with table smallt using a

BETWEEN predicate (zone BETWEEN zone min AND zone max). When the zone range of the

BETWEEN predicate is (790, 1001), only the tuples of zone values 800, 900 and 1000 (within the

zone range) are quickly selected and all the other tuples are skipped. If the left column is unsorted,

we use imprints under three conditions: 1) the data type is right for imprints. All numeric types

(integers of all widths and floating points) and types that are internally represented as integers,

such as dates and timestamps are suitable for imprints; 2) the left column is either persistent or

already has imprints; 3) the right column is long enough so that it is worth the e↵ort of creating

imprints. Without sorting the order on the ra avg and decl avg columns, the other two range join

predicates: u0.ra avg between t0.ra-alpha(t0.“dec”, radius) and t0.ra+alpha(t0.“dec”, radius) AND

u0.decl avg between t0.decmin and t0.decmax, will use imprints to minimize data access.

Fig. 4.— optimized RANGE-JOIN in MonetDB.

The time complexity includes two parts: the complexity of sorting the left column isO(|l|·log|l|),
and the complexity of range join:

T (|l| ,|r|) =

8
>>><

>>>:

|r| · log|l|, if l
sorted

C ·|r| ·|l| , if l
imprints

|r| ·|l| . if nested loop

where C is the size of imprints of the left column. C is ⌧ 1 in a typical case, and 1
16 in the worst

case. Without optimization, direct scan is employed using a nested loop, so C=1. As shown by

our test, the optimization of the RANGE-JOIN implementation can reduce the source association

procedure from 4m 2s further down to a few seconds, giving a speedup by a factor of 220. (see

§4.3.1 for the detailed performance testing).
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2.2. Optimization of One to many Match Type

Figure 5 illustrates a simplified version of HCHDLP, which includes source associations and

subsequent processing of associated relationships in four types. Among these types, the one to many

relationship is the slowest one. This relationship is caused by either a new image with high-

er spatial resolution or a newly detected source. When a one to many relationship occurs, the

associatedsource table is traversed twice originally in TraP (Scheers 2011). The size of the as-

sociatedsource table is a function of number of sources of the sky-model uniquecatalog table :

D
assoc

= 175600⇥ 26⇥ 2400⇥ 36⇥ n = 367⇥ n (GB), where n is the number of observation days.

For instance, at the epoch of image 5000, the associatedsource table has 1+ billion rows. The

EQUI-JOIN with the associatedsource table on a predicate of equal uniqueid takes 20.1s to return

41,894 rows.
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Fig. 5.— HCHDLP displays how to process four types of source association results. Many to many

links are replaced with the link with minimal distance to reduce overhead. One to many links are

replaced with many new links, which are inserted into the the light curve table. Old uniqueids and

their successors relationships are inserted into the uid legacy table. One to one links are previously

found relationships. Zero to one links are newly detected targets which have no previous assigned

uniqueid.
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Since the EQUI-JOIN with associatedsource is so expensive, we have changed the strategy of

forming light curves of the one to many type to build the pipeline that can operate in real time .

1) We drop uniqueness constraint by removing the primary key and foreign key on the large

tables during the run time of HCHDLP 2. During idle time, the check is instead carried out by an

SQL query, and the primary and foreign keys are added back to maintain the database consistent.

2) In the one to many case, the old relationship between the uniquecatalog and the target table

is replaced by many new ones through “forking” (see figure 5 for the details). However, during the

replacement, DELETE DML (deleting the old relationships from the big table associatedsource) is

expensive. We avoid DELETE 3 by INSERT the old relationships to a small auxiliary table,

uid legacy. The Uid legacy table stores deleted old uniqueid and their children (replacement)

uniqueids in the one to many scenario and it will exist for all time as a historical record of changes.

3. Shared-nothing Distributed HCHDLP Database Architecture

The catalogue and light curve production of the temporary HCHDLP database will be peri-

odically exported to the long-term distributed database. The shared-nothing distributed database

is the best solution to store the final products of HCHDLP over a long term thanks to an indepen-

dent hardware and software architecture. The architecture is adopted by taking into account of

the GWAC’s top level pointing strategy: there is no source association between the available sky

regions of di↵erent CCDs, which is guaranteed by the GWAC’s pointing strategy.

2applicable to all the match types of relationships

3Frequent UPDATE and DELETE DML operations have been shown to be very expensive on a petabyte system

(Becla et al. 2010), so we tried to constantly apply the “write-once and never-update” and “append-only” principle

to the big light curve table which greatly optimize HCHDLP throughput and latency.

https://www.researchgate.net/publication/220390082_Report_from_the_6th_Workshop_on_Extremely_Large_Databases?el=1_x_8&enrichId=rgreq-11e0f57888eab31716f1d59338cf049e-XXX&enrichSource=Y292ZXJQYWdlOzMwMzU4MTg3OTtBUzozNjY1NzQwMzc5NDYzNjhAMTQ2NDQwOTQ2OTEwMg==
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Fig. 6.— The distributed GWAC database architecture is comprised of one master node and

multiple worker nodes. Remote tables associatedsource1..n, uniquecatalog1..n on individual worker

nodes are mapped to the mergetable associatedsource and uniquecatalog on the central server.

Within a worker node, associatedsource1..n table can be further partitioned by time, i.e., by months

or weeks or a couple of days. This time partitioning of light curve table provides coarse temporal

indexing and finer data locality, so that light curve queries involve only the relevant temporal

partitions.

Figure 6 illustrates the shared-nothing distributed database architecture comprised of one

master node and multiple worker nodes. The initial number of worker nodes should be the same

as the number of CCDs. Each remote table on a worker node is mapped to the merge table with

the same name as the master. In terms of the MERGE TABLE+REMOTE TABLE of MonetDB,

MERGE TABLE technique is a horizontal data partitioning method. The technique allows a

table to be defined as the union of its partitions, and enables finer control of data locality during

query evaluation. As complements of the merge tables, the REMOTE TABLE technique allows

the partitions of a merge table to reside on di↵erent nodes. Queries involving remote tables are
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automatically split into subqueries by the merge table and executed on the remote tables. REMOTE

TABLE adopts a straightforward master-worker architecture: one can place the partition tables in

di↵erent databases, and then concatenate everything together in a MERGE TABLE in the master

database. Not only REMOTE TABLEs on another node, but also local normal tables can be added

to be part of a MERGE TABLE. MERGE TABLE supports nested merge tables, i.e., a MERGE

TABLE can also contain other MERGE TABLEs. The MERGE TABLE and its partitions can be

queried both individually and jointly.

In order to improve the performance of data querying, a remote table within a worker node

can be further partitioned according to the ratio of the real RAM size and the data product size.

The time span of each partition ranges from a couple of days to months.

There are a few sources that fall out of the boundaries of the observation areas, but the marginal

sources are few. Firstly, according to the share-nothing design, sources of one CCD camera will not

be associated with those of other cameras. Secondly, GWAC survey strategy and its pointing and

tracking system can ensure that each CCD observes a few fixed sky areas in the long term and the

drift of pointing center is controlled within 10 pixels. Therefore, if a marginal source is detected in

the area of a CCD, it will be added to its catalogue, and if the source moves out, it might appear

on another area, it will be added to another catalogue and traced. It will be flagged in the flag

attribute of the sources catalogue (see table 1).

4. Experiments and evaluations

This section describes our tests on the performance of both HCHDLP and shared-nothing

distributed database, including source association optimization on MonetDB and its comparison

with PostgreSQL, HCHDLP running and light curve queries.

4.1. Hardware and software configuration for HCHDLP

Our experiments run on a cluster of six server nodes of the CWI Scilens cluster platform

interconnected via InfiniBand 40 Gb/s links. Each node has two sockets 32 hyper-threaded cores

that use Intel Xeon CPU E5-2650 v2 @ 2.60GHz, with 256 GB main memory and 5.4 TB of

storage on software RAID0 containing 3 disk drives per server. Tests are conducted on MonetDB

default (development) branch v11.22.0, hg id 3603a1af9790. Optimized compilation of MonetDB

is activated in our tests.
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4.2. Data and Loading

A hindrance for large scale adoption of DBMSs in handling astronomical catalogues is the time

it takes to bulk-load the data into the databases. Our experiments are based on the target table.

It is ingested by simulated catalogue files, whose size are proportional to the observation time.

Simulated catalogue files represent pseudo-sources extracted after pipeline 0. The catalogue files

are synthesized by adding positions and flux noises to a template catalogue file extracted from the

UCAC4 catalogue (Zacharias et al. 2013). Typically each image is set to have ⇠ 175,600 sources,

and each source has 22 column attributes, which means an increment of target table is ⇠ 79 GB per

night (with a cadence of 15 s and 10 hr of observation per night) per CCD. We produce simulated

catalogue files in batches and load them into the target table before the HCHDLP system starts

testing.

Binary bulk loading (MonetDB 2016) is used to load simulated catalogues into MonetDB. The

SQL COPY command can take a complete ASCII file and insert the data in one go using all system

cores in parallel. Furthermore, MonetDB created a binary bulk loading method, the binary version

of the COPY command: COPY BINARY. When large tables are needed to load into a database,

the binary bulk loading is slightly faster. This saves rendering of data into ASCII and subsequent

parsing of the data being exchanged, and ‘attach’ it to the SQL table. To illustrate, the SQL query

below is used to load the binary column files into target table.

COPY BINARY INTO target FROM (’path\_to\_column\_file\_i’, ..., ’path\_to\_file\_f’).

Each attachment file is produced by our simulator program that writes the binary version of the

columns files directly into the disk. All the binary column files are aligned, i.e. the i-th value in

each file corresponds to the i-th record in the table. The files with numeric data are moved into

place to avoid copying (MonetDB 2016).

4.3. Performance of HCHDLP

4.3.1. Source Association

At the beginning, with the outside database optimization (i.e., sorted zone and “WITH”

clause), the execution time of the source association for two tables of ⇠175,600 rows is as short

as 4m 2s 4. Then, the inside database optimization further reduces the time of source association

from 4m 2s to 1.1s, with a 220x speedup. The association radius is set to be 6 arcsec, the same

4Without the optimization, the source association failed in the same environment due to a huge crossproduct

running out of disk space, and succeeded in a more powerful environment with 20TB disk space in 59m.

https://www.researchgate.net/publication/233982279_The_fourth_US_naval_observatory_ccd_astrograph_catalog_UCAC4?el=1_x_8&enrichId=rgreq-11e0f57888eab31716f1d59338cf049e-XXX&enrichSource=Y292ZXJQYWdlOzMwMzU4MTg3OTtBUzozNjY1NzQwMzc5NDYzNjhAMTQ2NDQwOTQ2OTEwMg==
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as the zone height that is a parameter in the zone algorithm. 5 Since the highest discarding rate

comes from the RANGE-JOIN on zone column, the 220x speedup is mostly from the binary search

on the sorted zone column. The following is the source association query by calling the associates

function.

sql> INSERT INTO tempuniquecatalog SELECT * FROM associates(2, 0.00166666666666666666);

179,769 affected rows (1.1s)

The accuracy validation of our optimization is performed by both self-join and cross-join of

source association and by checking if the correct number of new sources could be found. For a

self-join with a radius of 0.36 arcsec, the sources in a simulated catalogue with 175,597 rows all

match themselves. The related code is listed as follows:

--self-join

sql> INSERT INTO tempuniquecatalog SELECT * FROM associates(1, 0.0001);

175597 affected rows (663.816ms)

For cross-join, the sources in two simulated catalogues with 175,597 rows ⇥ 175,540 rows are

cross-matched with a radius of 5 arcsec. The cross-join returns 27 unmatched sources because their

distance from other sources are above 40 arcsecs. Again, the related code is listed as follows:

--cross-join

sql> INSERT INTO tempuniquecatalog

SELECT * FROM associates(2, 0.00138888888888888888888888888889);

176539 affected rows (1.1s)

--sanity check

sql>INSERT INTO newsrc SELECT t.id AS targetid

FROM target t LEFT OUTER JOIN tempuniquecatalog tuc

ON t.id = tuc.targetid

WHERE t.imageid = 2 AND tuc.targetid IS NULL ORDER BY t.id;

27 affected rows (96.168ms)

5This association radius here is set to be half pixel (11.7 arcsecond/pixel). The uncertainty of object position

is 0.1 pixel for our simulated catalogues. We employ 0.5 pixel (5 �) as the tolerance radius here, which

is consistent with our above PSF method of the tolerance radius selection in practice (see §2).
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4.3.2. Comparison With PostgreSQL

The performance of source association based on the column-store database (MonetDB) is

compared with a traditional row-store database (PostgreSQL) involving PostGIS. PostGIS 6 is

an extension to PostgreSQL which allows it to handle and process geographic data through GiST-

based R-Tree spatial indices. Gist (Generalized Search Tree) index is the most suitable for querying

spatial data. GiST is used to speed up searches on all kinds of irregular data structures (integer

arrays, spectral data, etc) which are not amenable to normal B-Tree indexing (Hellerstein et al.

1995). Although PostgreSQL supports three kinds of indices by default: B-Tree, R-Tree, and GiST,

the GiST index is adopted in the current study. At first, B-trees are hard to deal with when applied

to a two dimensional sky image since they were originally designed for one dimensional, linearly

ordered key spaces. Secondly, R-Tree implementation is not as robust as the GiST. For example,

GIS objects larger than 8K will cause the building of R-Tree index to fail. Finally, GiST index

can support nearest-neighbor search over large datasets, which is close to the purpose of source

association (Kornacker 1999). The queries run on PostgreSQL are identical, with modulo syntax

di↵erences. The code below shows the experimental procedures using PostgreSQL.

associates function experiment on PostgreSQL 9.4.4.

0. prepare data (the source lists are produced )

gwacdb=# COPY targets(imageid,zone,ra,dec,mag,pixel_x,pixel_y,ra_err,dec_err,x,y,z,flux,

flux_err,normmag,flag,background,threshold,mag_err,ellipticity,class_star,orig_catid)

from ’/scratch/meng/gwac/RA240_DEC10_sqd180-ccd4-86401.cat’ delimiters ’ ’ CSV;

COPY 175540

gwacdb=# COPY uniquecatalog(id,targetid,ra_avg,dec_avg,flux_ref,datapoints,zone,x,y,z,

INACTIVE) from ’/scratch/meng/gwac/RA240_DEC10_sqd180-ccd4-86402.cat’ delimiters ’ ’ CSV;

COPY 175591

1. without tuning

gwacdb=# INSERT INTO tempuniquecatalog SELECT * FROM associates(2, 0.00166666666666666666);

INSERT 0 175123

Time: 4456163.234 ms

2. with tuning

By default, postgresql uses only a single core and only 128MB disk cache is

available to a single query.

## tuning for our machine 256 GB of RAM

#shared_buffers = 170GB

#effective_cache_size = 254GB

#maintenance_work_mem = 42GB

#work_mem = 160GB

6http://postgis.net/

https://www.researchgate.net/publication/237284032_Generalized_Search_Trees_for_Database_Systems_Extended_Abstract?el=1_x_8&enrichId=rgreq-11e0f57888eab31716f1d59338cf049e-XXX&enrichSource=Y292ZXJQYWdlOzMwMzU4MTg3OTtBUzozNjY1NzQwMzc5NDYzNjhAMTQ2NDQwOTQ2OTEwMg==
https://www.researchgate.net/publication/237284032_Generalized_Search_Trees_for_Database_Systems_Extended_Abstract?el=1_x_8&enrichId=rgreq-11e0f57888eab31716f1d59338cf049e-XXX&enrichSource=Y292ZXJQYWdlOzMwMzU4MTg3OTtBUzozNjY1NzQwMzc5NDYzNjhAMTQ2NDQwOTQ2OTEwMg==
https://www.researchgate.net/publication/221309615_High-Performance_Extensible_Indexing?el=1_x_8&enrichId=rgreq-11e0f57888eab31716f1d59338cf049e-XXX&enrichSource=Y292ZXJQYWdlOzMwMzU4MTg3OTtBUzozNjY1NzQwMzc5NDYzNjhAMTQ2NDQwOTQ2OTEwMg==
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## The linux system shared memory parameters are configured to

#kernel.shmmax=188978561024 (176GB)

#kernel.shmall=188978561024

#kernel.shmmni=22528.

gwacdb=# INSERT INTO tempuniquecatalog SELECT * FROM associates(2, 0.00166666666666666666);

INSERT 0 175123

Time: 2958910.701 ms

3. with GIST index and the tuning above

3.1 create geometry columns

alter table target add column geo geometry; 0.0179

alter table uniquecatalog add column geo geometry; 0.01395

update target set geo=st_makepoint(x,y,z); 3.52

update uniquecatalog set geo=st_makepoint(x,y,z); 1.46

3.2 create gist indices

create index target_gist on target using gist(geo); 3.37

create index uniquecatalog_gist on uniquecatalog using gist(geo); 1.73

3.3 source association with radius=6 arcsec

gwacdb=# select count(*) from uniquecatalog c, target t 3.89

where ST_3DDFullyWithin(c.geo, t.geo, radians(0.00166666666666666666)) and t.imageid=2;

Total 14.00

Table 2 compares the runtimes of source association in MonetDB and in PostgreSQL. All

tests are based on the cross-match of two tables with 175,597 and 175,540 rows. The tuning

parameters for PostgreSQL database server are shared buffers = 170GB, effective cache size =

254GB and work mem = 160GB. The linux system shared memory parameters for PostgreSQL

are kernel.shmmax = kernel.shmall = 188978561024(176GB) and kernel.shmmni = 22528(B).

Note that only one process per database session can be utilized by PostgreSQL, so a single complex

and CPU-intensive query is unable to use more than one CPU. In order to do a fairer comparison to

PostgreSQL, a single-core performance test of MonetDB is done by setting “sequential pipe” as the

SQL optimizer pipeline. Sequential pipe is to let mserver5 avoid using parallelism. The average

runtime: 1.7 second. The single core performance shows MonetDB is faster than PostgreSQL

not only due to MonetDBs ability to harness multiple cores, but mainly due to the Range-Join

optimization we applied for it.
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Source Association Queries Mean time (second)

MonetDB with “WITH” clause 242

MonetDB with Range-Join optimized 1.1

PostgreSQL 4456

PostgreSQL tuned 3074

PostgreSQL tuned and with GiST index create index 10.08

query 3.89

sum 13.97

Table 2: Source association query speed comparison between MonetDB and PostgreSQL. Both

under optimization or indexing, MonetDB is 3.54x faster than PostgreSQL even though extra time

for creating GiST index is not taken into account in PostgreSQL. It’s important to note the GiST

index will be updated every time new data is inserted, so data loading performance will become

slower and hence this will significantly delay the whole HCHDLP.

By comparison, MonetDB (1.1s) is 3.54x faster than PostgreSQL (3.89s) even though the time

for creating index in PostgreSQL is not included. It’s worth noting that the GiST index is needed to

be updated when new data are inserted every 15 seconds (the cadence of GWAC). Such a frequent

update causes that the index building and data loading become slow, which finally significantly

degrades the pipeline performance.

4.3.3. Performance of HCHDLP

In principle, the sky-model uniquecatalog table grows over time due to new detections of

events, e.g., optical transients, asteroids and artificial objects, which will increase the execution

time of HCHDLP. In order to test how the HCHDLP will perform in an extreme case, we carry out

stress tests on HCHDLP by increasing the uniquecatalog table size through an enhanced artificial

mismatch rate. The artificial mismatch is created by displacing the position of each source in u-

niquecatalog through a random o↵set with a Gaussian distribution to produce simulated catalogues.

Therefore, an extremely high number (⇠13,000) of new simulated sources is added to uniquecatalog

per day. In practice, taking into account optical transients or other moving objects, all noises

and false positives, the upper limit of new objects of GWAC is less than 1000 per day. Since the

HCHDLP’s main scientific goal is to manage light curves of known objects, we will clean all of

above kinds of sources out of the uniquecatalog table every week. Hence, there will be very few

new sources per day. During the 10 years operation of GWAC, the HCHDLP performance should

be stable.

Figure 7 shows the running time of HCHDLP and increase of the light curve data size per day as

a function of time over a period of nineteen days. Each point in the figure represents the time taken

by the pipeline to produce the light curve data for the sources (2400⇥175600 = 0.42billion,⇡ 79GB)
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observed in each night. 19 days of observations resulted in a target table of 8 billion rows (1.5 TB)

and a light curve associatedsource table of 12.7 billion rows (318 GB). The scripts we used to arrive

at the results of this section are available on Github. 7

We argue that the HCHDLP performance is acceptable in the context of GWAC based on our

stress tests. On one hand, the execution time roughly goes linearly with the increase of light curve

data per day, which is implied by the fact that both execution time and data volume increase with

date in parallel (see Figure 7). On the other hand, the maximum execution time to process one

image is derived to be less than 7 seconds from Figure 7, which is less than the GWAC cadence of

15 seconds.

Fig. 7.— Light curve pipeline performance and the light curve data generated everyday over

a period of nineteen days, the execution time of the stress test goes up linearly with everyday’s

increasing data size. For the first day’s data volume that is equivalent to GWAC daily data volume,

the average time to process one image is 3.95 seconds, which is much faster than the speed of GWAC

high-cadence image generation of 15 seconds.

4.4. Performance of Shared-Nothing Distributed Database

4.4.1. Light Curve Retrieval on Partitioned Tables

If the data volume of the light curve table associatedsource increases continuously night by

night, queries on the huge table would be very slow. However, astronomers are usually interested

7https://github.com/wan-meng/gwac pipeline, https://github.com/wan-meng/lightcurve-chunksize,

https://github.com/wan-meng/concurrency
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in data within certain time slices, so in many cases, the results of a query can be achieved by

accessing a temporal subset of partitions, rather than the entire table, a technique that is called

Partition Pruning. Partition pruning splits a large table into smaller, individual tables, so queries

that access only a fraction of the data can run faster because there is less data to scan. Partition

pruning dramatically reduces the amount of data retrieved from disk and shortens processing time,

thus improving query performance and optimizing resource utilization (Herodotou et al. 2011).

In terms of the number of partitions, a larger number of smaller partitions provides finer

granularity and causes less I/O but also increases management overhead. The more partitions we

generate, the more partitions we have to deal with. In consideration of these trade-o↵s, we need

to test which chunk size can provide the best response time for our testing system. In the test

of determining the optimal chunk size for the associatedsource table, it is horizontally partitioned

on ranges of ROW NUMBER. Four partitioning ranges, i.e., chunk sizes, are tested to find which

provides the best response time. Each chunk is created by accumulating the ROW NUMBER of the

associatedsource table to reach the size of 6⇥109, 12⇥109, 24⇥109 and 48⇥109 rows respectively.

The SQL extract below is used to generate the timing information of figure 8.

For each chunk size, the following queries of light curve retrieval are launched to search for all

time series of flux measurements for a source of uniqueid=1 from all partitioning chunks, so the

WHERE clause does not specify which partitions are relevant for the query.

SELECT i.jd, t1.flux

FROM (SELECT flux,imageid FROM

(SELECT targetid

FROM associatedsourceX

WHERE uniqueid=1)

t0, targetX t

WHERE t0.targetid=t.id

) t1,

image i

WHERE t1.imageid=i.imageid;

The response times are measured for both hot and cold runs. The hot runs refer to all the

needed data is already loaded into main memory, while the cold one is that data need to be loaded

into memory before the queries start running. MonetDB is a main-memory database, the entire

main-memory of which can be viewed as cache for disk IO access (Manegold et al. 2002). MonetDB

aggressively uses as much memory as available, as many cores as possible in parallel without many

tuning knobs, and tries to avoid going to a slow disk, so caching e↵ects have a significant impact

on performance.

For chunk sizes of 6B to 48B, the tested data size ranges from 710GB for a period of 8 days

to 3TB for a period of 26 days. The dataset includes the light curve table associatedsource and
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the target table loaded into MonetDB beforehand. Then, we ran the above light curve retrieval

query using uniqueid=1 and measured the (wall clock) time it took to produce the result. In cold

runs, the database is stopped and all file system caches are emptied. In hot runs, we start up the

database, and run the query two times to warm up caches. For both cold and hot runs, every query

was ran five times to control for random fluctuations in system IO and background activity.

Figure 8 shows the normalized response times of returning a row as a function of partitioning

chunk size. It is obvious that the response time of the hot runs is much shorter than that of the

cold runs, as expected. As we can see, for all cold runs, response times are almost unvaried. For

hot runs and chunk size between 6B and 24B, MonetDB maps all needed data into memory via

the disk cache to greatly increase the performance by avoiding disk IO. When the chunk size grows

to 48B, related columns of the associatedsource table and target table touched by this query add

up to 1035GB, ⇠ 4 times the RAM capacity of 256GB. Therefore, the kernel is swapping data out

to free up some memory, which causes severe performance degradation. So, our tests suggest that

the chunk size of 24B is an optimal trade-o↵ for our testing system. It is a good balance between

partitioning size of tables and performance.

Fig. 8.— Performance of light curve retrieval over di↵erent partitioning chunk sizes.
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4.4.2. Scalable Concurrency

Fig. 9.— Single user vs. 10 vs. 20 users Response Time on 1TB/2TB datasets

Good concurrency is highly desirable. A database with good concurrency allows a large num-

ber of users to access a database without any noticeable impact on performance (Bernstein and

Goodman 1981). Appropriate concurrent query execution facilitates improved resource utiliza-

tion and aggregate throughput, while too much concurrency makes it a challenge to overall query

performance (Duggan et al. 2011).

To provide both the fastest speed and highest concurrency of our database, the goal of this

experiment is to find, at which degree of concurrency the light curve retrieval query is fastest. In the

experiment, we increase the number of concurrent users and measure the response time of random

light curve retrievals on the distributed database, which is accessed either via the REMOTE table

on the master node or via the local table on the worker nodes. We fire up (1/10/15/20) parallel

queries at a time to represent multiple-users accessing the database with data volumes of 1TB and

2TB. The test result is shown in Figure 9. In this figure, it is obvious that the response time

of concurrent queries for 1TB is much shorter than that for 2 TB. In the 1TB case, the average

response time of a single query is 0.8/0.117/0.121/0.199 for a concurrency of 1/10/15/20. So, if we

fire up 10/15/20 queries at a time every 10 seconds, 60 queries will take a total of 7.02/7.26/11.94

seconds instead of 48 seconds for 1 user. In one minute, we will get throughputs of 60/90/120

queries/minute. This test shows that scheduling appropriate concurrency can boost performance

and throughput by e�cient use of hardware resources. If we emphasize response time performance

over throughput as a scientific program, there should be no more than 15 concurrent users. But

when more throughput is the evaluation criterion, 20 users is a better choice.
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5. Conclusion

We develop a real time light curve processing pipeline HCHDLP for the GWAC project. It

is based on the column store database engine, MonetDB, and has been optimized for the large

amounts of data of GWAC. From outside and inside the database engine, MonetDB has been

improved to reduce the time consumed in the source association procedure. Outside the database

engine, a sorted version of the inner relation ordered by zone column is created before the join

phase, and a SQL WITH clause is adopted to avoid multiple recomputations by MonetDB. For

inside the database engine, the RANGE JOIN query is implemented through quick binary search

and compressed column imprints. Furthermore, in building light curves of one to many match type,

HCHDLP drops uniqueness check during running and replaces DELETE with INSERT (i.e., insert

the old relationships to a small auxiliary table).

As a result of optimization, our HCHDLP can process one catalogue in 3.95 seconds on average,

significantly shorter than the image cadence of 15 seconds of GWAC. Our tests show that the

source association is sped up by a factor of 220x relative to that before optimization. According to

theoretical analysis, the time complexity is reduced from O(|r| ·|l|) to O(|r| · log|l|) (binary search) or

O(C ·|r| ·|l|) (imprints, C ⌧1). We have also made comparisons between MonetDB and PostgreSQL

in performance of source association queries and find that the former takes 1.1s on two tables with

175,597 rows ⇥ 175,540 rows, 3.54⇥ faster than the row-store disk-based database PostgreSQL.

We also built a shared-nothing distributed database to manage long-term light curves using a

two-level time partitioning strategy via the MERGE TABLE and REMOTE TABLE technology

of MonetDB. The optimal partitioning chunk size should give both short response time and fewer

partitions, and is determined through tests. We find that the response time of MonetDB scales

linearly with the number of users. In this scalable solution, both short and long-running queries on

large data sets are available, which provides guidance for a solution to GWAC in the management

of massive data. Finally, estimating the scalability of HCHDLP performance over the full survey

duration with realistic new source counts is key for a long term astronomical project like GWAC.

The upper limit of real source counts of GWAC is less than 1000 per day, taking into account

optical transients or other moving objects, all noises and false positives. In practice, we will clean

all of above kinds of sources out of the uniquecatalog table every week. Hence, new sources per day

is very few and the HCHDLP performance over the survey duration should be stable in the long

term.

In our future work, the HCHDLP may be further optimized in processing speed and in match

criteria. The GWAC real-time image processing is required to be completed in 15 seconds for

one image, but the current implementation of pipeline 0 (see figure 2) takes almost 10 seconds

and HCHDLP takes 5.8 seconds (including both data loading and the cross-match). We note that

pipeline 0 can be sped up through GPU implementation and advanced algorithms based on our

current optimization are available for source association of HCHDLP. Moreover, the match criteria

of source association will take into account adding a flux factor and using variable tolerance radius
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with brightness of objects to increase accuracy of cross-matching. Our designed shared-nothing

distributed database can provide one preliminary solution to managing light curves in the long

term. It is certain that with technology advancing, there are other possibly better solutions that

may overcome the data challenge. Additionally, there are some optimization options to reduce

light curve data volume, such as aggregate source characterization or reducing time resolution of

the data.
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