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Abstract—Analytical database systems offer high-performance
in-memory aggregation. If there are many unique groups, tem-
porary query intermediates may not fit RAM, requiring the use
of external storage. However, switching from an in-memory to
an external algorithm can degrade performance sharply.

We revisit external hash aggregation on modern hardware,
aiming instead for robust performance that avoids a “perfor-
mance cliff” when memory runs out.

To achieve this, we introduce two techniques for handling
temporary query intermediates. First, we propose unifying the
memory management of temporary and persistent data. Second,
we propose using a page layout that can be spilled to disk
despite being optimized for main memory performance. These
two techniques allow operator implementations to process larger-
than-memory query intermediates with only minor modifications.

We integrate these into DuckDB’s parallel hash aggregation.
Experimental results show that our implementation gracefully de-
grades performance as query intermediates exceed the available
memory limit, while main memory performance is competitive
with other analytical database systems.

Index Terms—relational databases, database query processing,
aggregation

I. INTRODUCTION

Until late in the 20th century, main memory was expensive;
therefore, traditional database management systems (DBMS)
optimized for disk access, as this was their major bottleneck.
“Spillable” data structures like B-trees [1] were used not only
to speed up retrieval of persistent data but also inside query
operators. As a result, these systems could process workloads
that were larger than the small amount of available memory.

Around the 2000s, RAM prices decreased, and database
systems optimized for main memory [2], for both persistent
data and temporary query intermediates [3]. In these systems,
main memory access became the bottleneck, and techniques
were devised to make better use of CPU caches [4]. DBMSes
have now evolved into large monolithic database servers, often
with large amounts of RAM at their disposal.

Pure in-memory systems are not economical, however.
Efficient utilization of secondary storage, e.g., by caching, is
key to providing good performance at a low cost [5]. In recent
years, there has been a renewed interest in buffer management,
specifically for solid-state memory, that offers much higher
bandwidth and lower latency than magnetic disk [6]–[8]. Data
management systems are now reverting to being disk-based
without sacrificing in-memory performance [9].
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Fig. 1. Conceptual aggregation performance vs data size (log-log scale). When
switching from an in-memory strategy to an external strategy that minimizes
memory usage, performance degradation is harsh and sudden (a “performance
cliff”). A unified strategy for in-memory and external aggregation that utilizes
all available memory degrades more gracefully (performance-robust).

This body of research has focused on using storage for
persistent data but, for the most part, ignored temporary query
intermediates. Analytical (OLAP) systems, which frequently
process large volumes of data and often have large query
intermediates, became mainstream after DBMSes optimized
for main memory. As systems became able to process queries
on arbitrary-sized persistent tables, intermediate results can
- depending on the query - also grow to arbitrary sizes. In
these cases, many modern OLAP systems either abort queries
or switch to a traditional disk-based algorithm that is orders
of magnitude slower, introducing a “performance cliff”, as
illustrated in Figure 1.

Given the advancements of OLAP systems in the past two
decades [10]–[12], and the research into buffer management
on modern hardware [6], [8], OLAP systems should be able
to perform more robustly when intermediates exceed main
memory. However, traditional buffer managers have fixed-size
pages and a statically allocated pool. This inflexibility makes
them undesirable for intermediates. Therefore, temporary data
is allocated differently. Managing the entire memory pool, i.e.,
persistent and temporary data, in a cooperative manner may
help systems better utilize available memory [13].

In this paper, we go beyond Cooperative Memory Man-
agement and take a unified approach to memory manage-
ment for persistent and temporary data. We have developed
a specialized page layout specifically for temporary data to
accommodate this. We have integrated this into the hash
aggregation operator of DuckDB, our in-process analytical
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database system. This allows us to efficiently utilize secondary
storage, enabling larger-than-memory aggregation for inputs
with many unique groups.

Our main contributions are the following:
1) A unified approach to memory management that permits

variable-size pages and stores pages for temporary query
intermediates in the same pool as persistent data, allowing
the buffer manager to evict both to storage as needed.

2) A novel page layout for temporary query intermediates
on buffer pages, optimized for in-memory performance,
and spillable to storage without serialization overhead.

3) An integration of the above two techniques into a parallel
hash aggregation algorithm that can gracefully degrade
performance as the memory limit is exceeded.

The rest of the paper is organized as follows. Section II
introduces the problem of temporary query intermediates and
discusses related work. After presenting Unified Memory
Management in Section III, we present our buffer page layout
in Section IV. DuckDB’s hash aggregation integrates both
of these and is presented in Section V. We describe our
experimental setup in Section VI, and take a closer look at
how Unified Memory Management operates in Section VII.
We experimentally evaluate our aggregate implementation and
compare it with other implementations in Section VIII. Finally,
we summarize and conclude the paper and discuss future
research in Section IX.

II. TEMPORARY QUERY INTERMEDIATES

In this section, we discuss the problem of managing tempo-
rary query intermediates, as well as discussing related work.

The Memory Hierarchy. Computer storage is organized
hierarchically, with smaller capacities and faster access times
at the top (CPU registers and Cache Memory) and larger ca-
pacities and slower access times at the bottom (Main Memory
and Storage). Data access patterns that tend to access data at
the top of the hierarchy more than the bottom are favorable,
as accessing the higher tiers has a lower latency.

Until late in the 20th century, main memory was expensive,
and database systems operated with a very low amount of
memory by today’s standards. Disk speeds were much lower
than today, and storage needed to be accessed frequently due
to the low amount of available memory. Disk access was the
bottleneck; therefore, database systems were optimized for
accessing storage. Around the 2000s, RAM prices decreased,
and database systems began optimizing for processing data
in main memory [2]. In these systems, memory access has
become the bottleneck [4].

Streaming query execution. The common “Volcano” query
execution paradigm [14] has a favorable memory access pat-
tern: data is streamed tuple-at-a-time rather than processing
query plans operator-at-a-time, allowing tuples to stay at the
top of the hierarchy longer. Most modern OLAP systems
implement streaming query execution. Their execution engines
are usually based on either vectorization, pioneered by Vec-
torWise [10], or data-centric code-generation, pioneered by
HyPer [11]. Vectorization processes small vertical chunks of

cache-resident vectors at a time. Data-centric code generation
processes data such that a tuple is kept in CPU registers as
long as possible. Today’s systems have greatly improved query
processing speeds compared to traditional disk-based systems
by keeping data at the top of the memory hierarchy longer,
among other reasons.

Blocking Operators. Some relational operators, however,
such as aggregation, are blocking and cannot output data until
all input data has been read. Data cannot be streamed through;
Therefore, query intermediates have to be materialized, i.e.,
temporarily kept within the operator. As intermediates grow in
size, they move down the memory hierarchy. If intermediates
grow such that they no longer fit in memory, they are “spilled”,
i.e., written to storage to complete the query.

Traditional disk-based database systems implemented rela-
tional operators for the low-memory environments that were
available at the time. Their operators needed to be prepared to
spill; therefore, they often used spillable data structures such as
B-trees [1]. Storage access degrades query performance as the
cost is significantly higher than main memory access. As the
available memory grew, operator design was revisited. Hash-
based algorithms that operate fully in main memory perform
better than disk-based algorithms [3]. Hash tables, unlike B-
trees, are not trivially spillable data structures.

Robustness. Systems that implement hash-based operators
may fall back to a disk-based algorithm to complete queries
with larger-than-memory intermediates. This choice can be
made during query optimization, e.g., using cardinality es-
timates, but these are often inaccurate [15]. Alternatively,
systems can restart a query when intermediates exceed the
memory limit at runtime. Either alternative creates a scenario
where adding a single row to a table could potentially cause
the disk-based algorithm to be chosen. Switching algorithms
causes a sudden drop in performance, as the hash-based algo-
rithm operates in memory and has O(1) lookup complexity,
while the disk-based algorithm accesses disk and has O(log n)
lookup complexity if a B-tree is used.

Operator implementations that adapt to larger-than-memory
intermediates at runtime provide more robust query run-
times [16]. Hybrid algorithms such as hybrid hash join [17]
realize this with a single, efficient algorithm that works
regardless of whether intermediates fit in memory. Hybrid
algorithms are limited to an input size less than “the square
of memory” [17], which is enough for many use cases.

Memory Management. Traditionally, database systems im-
plement a buffer manager to move paged data between main
memory and storage. Operators only specify when and for
how long pages are needed, and the buffer manager will fetch
them from memory or disk. Common wisdom is to use a
buffer manager with fixed-size pages and a fixed-size pool, the
size of which is user-configured. The fixed size makes them
unattractive for temporary query intermediates because large
objects such as hash tables cannot be stored on a single page.
Spreading large objects over multiple pages makes using them
less efficient and more complex [9]. Therefore, temporary
query intermediates are usually allocated differently [13].



This essentially creates two memory pools, one for per-
sistent data on fixed-size pages and one for temporary data
that allows variable-size allocations. The fixed-size buffer pool
cannot shrink if more memory is needed for intermediates;
therefore, the size must be tuned to the workload. Cooperative
memory management [13] challenges this, but to the best of
our knowledge, this has yet to be implemented in any system.
Allocating from a different pool also means that the buffer
manager is not used to offload intermediates, but operators
must explicitly read from and write to a temporary file.

When query intermediates are spilled from memory to
storage, random access time is greatly increased. In storage,
data is no longer byte-addressable but block-addressable. New
technologies such as byte-addressable storage or persistent
memory may change this in the future, but these are not
generally available. Going from byte-addressable to block-
addressable requires changes to operator algorithm design:
blocks must be loaded into memory before the data can be
randomly accessed, e.g., by a hash table.

MMAP. One option to circumvent this problem would be to
use memory-mapped (MMAP) files, an operating system (OS)
feature that maps the contents of a file on secondary storage
into a program’s address space, making data that resides
in storage byte-addressable. MMAP essentially allows the
database system to keep using the same algorithm that assumes
everything fits in memory by offloading the responsibility of
loading and evicting pages to the OS. With this approach,
buffers can exceed the available memory limit, which allows,
e.g., hash table probes to randomly access data in storage.

MMAP requires the OS, which has no knowledge of the
workload, to evict and load pages. Randomly accessing storage
is orders of magnitude slower than randomly accessing data in
memory and is unlikely to provide robust query performance.
Furthermore, the OS’s page eviction mechanisms were found
not to scale beyond a few threads for larger-than-memory
DBMS workloads on high-bandwidth secondary storage de-
vices [7]. This also effectively rules out the use of “memory
rewiring” [18] for larger-than-memory processing on many-
core architectures because it uses MMAP.

SSDs. Not long after database systems optimized for main
memory, the use of Solid-State Disks (SSDs) became main-
stream because of their lower latency and higher through-
put. The potential performance benefit of SSDs was quickly
recognized in the database literature [19]. Advancements in
hardware, as well as advancements in optimizing for SSDs,
have ultimately led to modern SSD-optimized storage man-
agers such as LeanStore [6]. However, these advancements
have focused on using SSDs mainly for persistent storage, not
temporary query intermediates. This is partly due to many data
management systems having evolved into large monolithic
servers running in high-memory environments.

External Processing for OLAP. There is a clear need
for analytical data management in more economical envi-
ronments [20]. Many of the developments discussed in this
section took place before OLAP became popular, which was
in the late 1990s and early 2000s, after main memory database

systems had already become mainstream. As a result, OLAP
systems do not have a long history of processing larger-than-
memory intermediates like transactional (OLTP) systems do.
Most workloads fit in main memory, but the user experience
can often be frustrating if they do not. When the OLAP system
runs out of memory to complete a query, it either aborts or
switches to a much slower traditional disk-based algorithm.
The former leaves the user unable to complete the query, and
the latter results in unpredictable query runtimes.

Rather than an all-or-nothing approach to memory usage,
we argue that analytical database systems should be able to
efficiently use all available resources to complete a query
to provide robust query runtimes and graceful performance
degradation if the memory limit is exceeded. We should
prioritize the top of the memory hierarchy: use memory when
possible and only use storage if necessary. To achieve this, we
propose using Unified Memory Management.

III. UNIFIED MEMORY MANAGEMENT

In this section, we present Unified Memory Management, a
buffer manager that unifies memory management for persistent
and temporary data and permits variable-size allocations.

Persistent Data. DuckDB does not allocate a fixed-size
buffer pool for persistent data for two reasons:

1) As identified in the previous section, a fixed-size pool
occupies memory that could potentially be used for
temporary query intermediates.

2) DuckDB is not a server but an in-process DBMS. Its
allocations live within the same address space as the host
process. To avoid interfering with the host process, it is
important that DuckDB’s resource consumption is low
when idle; therefore, memory must be deallocated.

For the reasons mentioned in the previous section and porta-
bility reasons, DuckDB also does not use MMAP. Each buffer
is allocated individually.

To avoid fragmentation, DuckDB uses a fixed page size of
218 = 262,144 bytes (256 KiB) in storage; therefore, all pages
for persistent data are of this size. This page size is chosen for
OLAP workloads, which is DuckDB’s main use case. 256 KiB
is 64 times larger than the default page size of 4 KiB used in
Cooperative Memory Management and most OLTP systems.
If a page is no longer needed, it is added to the eviction
queue, which is a lock-free concurrent priority queue with a
least-recently-used (LRU) policy. Buffers in the eviction queue
are evicted when newly requested memory would cause the
memory limit to be exceeded. If enough memory is available,
persistent data stays cached in memory. If the newly requested
allocation has the same size as a page in the queue that can
be evicted, the buffer is reused.

Temporary Data. Allocations for temporary data are more
flexible. DuckDB’s buffer manager distinguishes three types
of temporary allocations: 1) Non-paged allocations, 2) Paged
fixed-size allocations, and 3) Paged variable-size allocations.
Non-paged allocations are non-spillable allocations of any
size. Despite being non-paged, the allocation goes through the
buffer manager so that it may decide to evict other pages if the



allocation would cause the memory limit to be exceeded, as
is the case for Cooperative Memory Management. If the allo-
cation is no longer needed, it is deallocated. Paged fixed-size
allocations have the same size as persistent pages (256 KiB)
and can be efficiently swapped in and out of a temporary file
in storage if needed. Note that the temporary file is completely
separate from the database file that stores persistent data and
could potentially reside on a different storage device if desired.
Having the same size for temporary and persistent pages
allows buffers to be reused. Paged variable-size allocations
can also be written to storage, but because it is of variable
size, each is written to a separate temporary file.

Non-paged allocations and paged variable-size allocations
are used sparingly only if efficient query processing requires
it, e.g., for the buckets of a hash table or strings larger than 256
KiB. Paged fixed-size allocations are the most common and are
used to store almost all temporary query intermediates, even if
ample memory is available. In our operator implementations,
we try to eagerly destroy temporary pages as soon as they
are no longer needed: this deallocates the memory if the page
was loaded or frees up disk space if the page was spilled.
This prevents the total space used for intermediates (memory
+ disk) from exceeding the necessarily required space.

Because allocation performance can affect query perfor-
mance [21], we are cautious about how the design of the buffer
manager affects allocation performance. A micro-benchmark
is performed in Section VII.

Cooperative Memory Management. The proposed buffer
manager allows all available memory to be used for persis-
tent and temporary data, rather than reserving and managing
these separately, like Cooperative Memory Management [13].
The key difference, however, is that, unlike Unified Memory
Management, Cooperative Memory Management does not
have paged temporary memory. Because Unified memory
management has paged allocations for temporary data, loading
persistent data, as well as more allocations for temporary data,
can cause not just persistent data but also temporary data to
be evicted. Note that eviction only occurs when memory is
full. Another important difference is that allocated pages for
persistent data are reused for temporary data and vice-versa.

Compatibility. The proposed buffer manager has a familiar
API with methods for (un-)pinning pages, similar to those in
other systems. However, it does not support the notion of dirty
pages because DuckDB uses lightweight compression [22]
to compress its columnar storage. Hence, it is not generally
possible to perform in-place updates, as pages are always
fully rewritten. The proposed buffer manager is, therefore,
compatible with other systems with minor modifications.

IV. PAGE LAYOUT

In this section, we first discuss the considerations that
went into designing DuckDB’s page layout for temporary data
before giving an overview of the implementation.

DSM vs. NSM. There are many ways to lay out relational
data on fixed-size pages. Traditional database systems such as
PostgreSQL store data on these pages in row-major format

also called the N-ary Storage Model (NSM), which has the
advantage of colocating tuples in memory, improving the
locality of accessing tuples. Page layouts like PAX [23] store
data in column-major format, also called the decomposition
storage model (DSM), which has the advantage of colocating
attributes in memory, improving the locality of accessing
columns. Both layouts are used for persistent data but could,
in theory, also be used for temporary data.

For intermediates, a row-major layout was shown to be
optimal, even in column-major systems, for join and aggregate
hash tables [24], as well as for sorting [25]. Co-locating a
tuple’s attributes in memory improves the locality of accessing
subsequent attributes of the same row for comparisons, reduc-
ing cache misses. Using fixed-sized rows over variable-sized
rows allows efficient access into these attributes using offsets,
further improving comparison performance [24]. Our goal is
to achieve good in-memory performance, as most workloads
fit in main memory; therefore, we choose to use fixed-size
rows in our page layout.

Variable-Size Data. Using fixed-size rows, however, means
that variable-sized data types such as strings, which are
omnipresent in real-world data sets [26], and arrays cannot
be placed within the rows. The variable-sized types are stored
elsewhere and can be addressed implicitly, e.g., with an offset,
or explicitly, with a pointer stored within the fixed-size row.
Implicit addressing requires additional information, e.g., the
ID of the page where the variable-sized data is stored, to locate
the relevant data. This causes more indirection and is less
efficient than explicit addressing. Furthermore, implicit ad-
dressing complicates arbitrarily jumping between rows stored
on different pages, e.g., for a bucket-chained hash table, as the
page ID of the variable-sized data may differ between rows.
Therefore, we will only consider explicit addressing, as this
does not compromise in-memory performance.

The actual variable-sized data is stored outside of the row.
If it is stored in a global pool that resides in memory, the pool
itself could exceed the available memory limit, causing the
query to be aborted. MMAP would allow such a global pool
to be spilled to storage, but we do not use it for the reasons
mentioned earlier. Variable-sized data should, therefore, also
be stored on pages to enable spilling. It can be stored either on
the same or a different page. If stored on the same page, the
fixed-size rows could grow from the top, while the variable-
sized data grows from the bottom. This can lead to inefficient
use of pages, however: If a page has room for more fixed-size
rows, but these rows have long strings that do not fit, we move
on to the next page, leaving the space on the previous page
unoccupied. Therefore, we store fixed-size rows and variable-
size data on different pages.

(De-)Serialization. Explicit addressing for variable-sized
data in combination with storing variable-sized data on buffer
pool pages creates a problem of invalid references: If pages
storing variable-size data are evicted and loaded back into
memory, their addresses may change, invalidating the explicit
addresses in the fixed-size rows pointing to this data. A com-
mon way to address such issues is to serialize the data when it



is written to storage and deserialize when it is read back into
RAM. However, (de-)serialization can easily dominate query
execution time if not implemented efficiently [27]. Given the
current SSD speeds, any (de-)serialization method will cause
spilling to become CPU-bound rather than I/O-bound.

Arrow Flight [28], an efficient data (de-)serialization format,
addresses this problem by only requiring serialization on write
and little to no deserialization on read. However, Arrow Flight
stores data in column-major format; therefore, using it as our
layout would compromise the in-memory performance of our
blocking operators [24]. Arrow flight also has a header for
each batch, which we do not need as the columns and types
of query intermediates are already known. A format like Arrow
Flight does not yet exist for row-major data.

Serializing before writing, besides being potentially costly
itself, also requires the operator to explicitly serialize pages
when they are unpinned, as the buffer manager may evict them
at any time. This may result in unnecessary (de-)serialization
if the page is not offloaded after all. Alternatively, if the buffer
manager is aware of the content that is stored on the pages,
it can serialize the page before evicting. This has the benefit
of only serializing the data when it absolutely needs to: only
when the data is actually written to storage. However, this
requires the buffer manager to know about the content of
pages, which will complicate the design and implementation.

Requirements. This discussion clearly shows that using
current page layouts for query intermediates will compro-
mise in-memory performance. This is undesirable, as most
workloads fit in memory. Using a different page layout for
pages in memory and pages in storage will lead to ungraceful
performance degradation as (de-)serializing data is costly. This
establishes the need for a page layout that is both efficient in
memory and can be spilled to storage. We have determined
the following requirements. The page layout must:

1) Use a row-major data representation with fixed-size rows;
2) Store variable-size data on separate pages;
3) Use explicit addressing for variable-size data;
4) Be spillable to storage without additional serialization.

In the remainder of this section, we present the design of
DuckDB’s page layout for temporary data. Each tuple is rep-
resented by a fixed-size row of which the types, and, therefore,
the widths and offsets of each attribute, are known when
the query plan is generated. This information is stored once,
globally, rather than once per page. Fixed- and variable-size
data are stored on separate pages. This fulfills requirements
1 and 2. In the remainder of this section, we explain how
requirements 3 and 4 are fulfilled.

Variable-Size Row. DuckDB uses the string type proposed
by Umbra [9], which is 16 bytes. The first 4 bytes store the
length of the string. Small strings of 12 characters or less are
inlined in the remaining bytes. For non-inlined strings longer
than 12 characters, a 4-byte prefix and a pointer is stored. As
discussed, a row-major format colocates a tuple’s attributes
in memory, improving cache efficiency when comparing them
subsequently. However, for non-inlined strings, we have to
follow the pointer, which may cause a cache miss. To improve

Fig. 2. DuckDB’s page layout for fixed-size rows and corresponding variable-
size rows. By using a fixed page size, the row and var pages will not have a
one-to-one relation with each other, and a small amount of metadata is needed
to describe how they line up. The metadata always describes tuples that have
their data stored on the same row and var pages. If a row or var page is
full, another metadata segment is created. This ensures that all variable-size
data within a metadata segment have the same base pointer, allowing pointer
recomputation to be done per segment.

locality, we store subsequent non-inlined strings in a row
sequentially as well. In other words, each fixed-size row has
a corresponding variable-size row.

Pointer Recomputation. As discussed, if a page storing
variable-size data is spilled to disk, it will be loaded into a
different location in memory. The pointers in the fixed-size
rows, however, still point to the previous location. These can
be recomputed if the previous base pointer of the page is
stored: For example, consider a string stored at address 0x48
in a page with base pointer 0x42, i.e., the string is stored at
offset 6 in the page. The page that stores the string is then
spilled and loaded back into memory, and now the page has a
base pointer of 0x500. We can recompute the new pointer by
subtracting the previous base pointer from the stored pointer
and adding the new base pointer: 0x48 - 0x42 + 0x500 =
0x506. This can be done in place and lazily, i.e., only after
we have detected that the variable-size data page has actually
gone to disk instead of pre-emptively.

Recomputing the pointers within a fixed-size row requires
knowing the previous base pointer of the page that stores its
corresponding variable-size row. However, storing that pointer
within each row introduces an 8-byte overhead. Instead, we
can exploit the fact that many subsequent fixed-size rows
will have their corresponding variable-size row stored on the
same variable-size data page. We could even go as far as
allocating one variable-size data page per fixed-size data page,
but this requires allocating a non-standard page size to store
the variable-size data, which we would like to prevent. If
possible, we prefer to allocate the standard page size.

Using the standard page size means that the fixed- and
variable-size row pages will not line up. This is illustrated on
the right-hand side of Figure 2. Here, many subsequent fixed-



size rows have their corresponding variable-size row stored on
the same variable-size data page; therefore, storing a pointer in
each row would be wasteful. Instead, we store a small amount
of in-memory metadata, as shown on the left-hand side of
Figure 2, that describes how the fixed- and variable-size rows
on the different pages line up. This allows us to recompute the
pointers without an overhead of 8 bytes per row. The explicit
addresses are recomputed only if the pages have been spilled
to disk, which we can detect by comparing the stored pointer
with the current page pointer; therefore, the performance in
RAM is unaffected.

The proposed page layout can be implemented in any
system that uses explicit paged I/O, as it is only a layer of
metadata on top of pages.

V. ROBUST EXTERNAL HASH AGGREGATION

In this section, we first discuss the considerations that went
into designing DuckDB’s hash aggregation before presenting
the implementation.

Aggregation is a key operator for OLAP workloads; there-
fore, its performance is stressed in analytical benchmarks
such as TPC-H [29]. If the input data is pre-sorted on the
group keys, aggregation can be performed in a streaming
fashion [30], but otherwise, aggregation is a blocking operator.
Grouped aggregation can be resolved by sorting the input data,
but if the data fits in memory, hash-based algorithms give
better performance [2]. Hashing also has the theoretical time
complexity advantage of O(n) rather than O(n log n). For
these reasons, most OLAP systems implement hash aggrega-
tion. Therefore, we also implement hash aggregation, as we
aim not to impair main memory performance.

Parallelism. Modern hardware has many available CPU
cores. Utilizing them well is essential for aggregation per-
formance. Plan-driven parallelism [31] decides a static thread
count when planning a query, then lets each thread execute
fragments of the query plan. Fragments are connected with
a parallelism-aware exchange operator that re-routes tuples
to different plan fragments. Other operators are kept largely
unaware of parallelism; therefore, this approach simplifies
operator design. However, re-routing tuples causes overhead,
and workloads cannot be balanced if data distributions are
skewed [12]. Morsel-driven parallelism [12] addresses this
with a framework for parallelism that schedules fine-grained
tasks on small fragments of input data. Tuples need not be
re-routed, and workloads are more evenly balanced across
threads. However, operators are required to be parallelism-
aware, complicating their design. Due to its large performance
benefits, DuckDB implements morsel-driven parallelism.

In morsel-driven parallelism, data is processed in pipelines.
Within a pipeline, data moves from an input, such as a
table scan, through streaming operators, e.g., projections, to
a “pipeline breaker”, i.e., a blocking operator, such as hash
aggregation. Pipelines themselves are parallel: threads work
concurrently on the same pipeline. Operators may have a local
state per thread and one state shared across all threads. Cross-
thread communication (or even cross-socket communication

in the case of NUMA) causes overhead; therefore, accessing
the shared state should be done sparingly.

Low Cardinality Aggregation. Many aggregations reduce
the size of the input to just a few rows. A typical example
is TPC-H query 1, which reduces the input to just four rows,
regardless of the scale factor. Low cardinality aggregations are
trivial to perform in parallel in morsel-driven parallelism, with
ungrouped aggregation being an extreme example. Thread-
local pre-aggregation is performed in parallel, reducing the
input to a few rows per thread or a single row if the aggregation
is ungrouped. After all input data has been read, the data
from each thread is combined. Even if there are many threads,
combining, e.g., four rows from each thread, has a negligible
cost compared to the thread-local pre-aggregation, which could
have aggregated millions of rows. Therefore, combining can
be done by a single thread without impairing performance.

High Cardinality Aggregation. Aggregation is not limited
to low cardinality outputs. Large data volumes can have a
large number of unique groups in the output. This leads to
high cardinality aggregations: checking whether a column is
a primary key, if this is not enforced by the data format,
eliminating duplicate rows in machine learning data sets,
queries with DISTINCT, or grouping by unique customer in
a large customer base, to name a few.

When the output has many rows, performing parallel aggre-
gation is nontrivial. After thread-local pre-aggregation, threads
have collected large amounts of data. In the extreme case
where each group in the input occurs exactly once, the data
has not been reduced at all, and potentially millions of rows
remain. Compared to low cardinality aggregation, combining
all thread-local data now has a significant cost, and performing
it with a single thread impairs performance.

The authors of morsel-driven parallelism take an approach
similar to IBM’s DB2 BLU [32] and perform thread-local pre-
aggregation in a small fixed-size hash table. When this hash
table is full, the data is partitioned. After all data has been pre-
aggregated and partitioned, the second phase begins. Partitions
are exchanged between threads and aggregated independently
in parallel. After a thread finishes aggregating a partition, its
tuples are immediately pushed into the next pipeline before
processing any other partitions. By keeping the thread-local
hash table small and fixed-size, fewer cache misses are in-
curred, and costly hash table resizes are prevented.

Data Distributions. This approach to aggregation effi-
ciently reduces heavy hitters in skewed data distributions and
exploits interesting orderings found in real-world data [33],
such as many of the same group keys appearing in succession.
Because the data is partitioned after reducing, this approach
to parallel aggregation is more robust to skewed distributions
than exchange-based parallelism, which partitions data across
threads before reducing, creating imbalanced workloads.

A downside, however, is that groups can be added to thread-
local hash tables multiple times if they appear at intervals
that are larger than the fixed-size hash table, e.g., in random
uniform distributions with many unique groups. This causes
memory consumption to grow linearly with the input size



Fig. 3. DuckDB’s hash aggregation. Morsels are assigned to threads until all input data has been read. During phase one, each thread pre-aggregates data
in a small fixed-size linear probing hash table with one level of indirection, i.e., offsets obtained from hashes access an array of pointers pointing to tuples.
Tuples are radix partitioned and stored using DuckDB’s spillable page layout, enabling larger-than-memory aggregation. After pre-aggregation, partitions are
exchanged and aggregated partition-wise in parallel. Fully aggregated partitions are immediately scanned, effectively becoming morsels in the next pipeline.

rather than with the output size. Resizing the hash table could
prevent this, but this would impair the performance of the more
common case of non-uniform real-world data, as it results in
more cache misses. Plan-driven parallelism does not suffer
from this problem, as the exchange operator always routes the
same groups to the same threads, but, as explained, plan-driven
parallelism does not perform well in case of skew, which is
common in real-world data sets [26].

External Aggregation. High cardinality aggregations may
not fit in RAM on limited hardware or with huge datasets;
therefore, intermediates must be spilled to storage to complete
the aggregation. As mentioned in the previous section, this
can lead to a frustrating user experience when using OLAP
systems, as these often only perform well if intermediates fit
into memory. If intermediates do not fit, query performance is
not robust, and some queries may not finish at all, as we will
see in Section VIII.

We now present DuckDB’s embarrassingly external hash
aggregation, which integrates the proposed page layout. This
aggregation method is inspired by HyPer’s [12] and IBM DB2
BLU’s aggregation [32], with key performance optimizations.
We describe a partitioned aggregation approach that, as we will
see, can trivially process larger-than-memory intermediates
without explicitly writing data to storage, leaving the respon-
sibility of spilling to the buffer manager, thereby simplifying
operator design. Our design is illustrated in Figure 3.

In the first phase, Thread-Local Pre-Aggregation, we assign
morsels to threads until all input data has been read. There
are usually many more morsels than threads. Data is scanned
from morsels in batches of up to 2,048 tuples. Threads pre-
aggregate in a small, fixed-size (217 = 131,072) hash table.
The hash table itself consists of two parts: 1) An array of
64-bit entries, which contains a pointer in the lower 48 bits,
pointing to the corresponding entry, and 2) temporary pages
for hash table entries consisting of groups and aggregates as
well as the corresponding pages for variable-length values.

Salt. Pointers have a width of 64 bits on 64-bit CPU
architectures, but only the lower 48 bits are used, as this allows
for up to ≈ 281 TB of address space. We use the remaining 16
bits of the pointer to store the upper 16 bits of the hash of the
corresponding tuple, which we call salt, shown in the Hash
Table of the Salted Linear Probing Hash Table in the right-
hand side of Figure 3. Indirect access to the hash table, i.e.,
storing entries that point to tuples rather than storing tuples
directly, keeps the area that is randomly accessed small and
allows for specific optimizations, which will be explained in
this section, that would not be possible otherwise.

Collision Resolution. As usual, the offset into the array
of 64-bit entries is obtained from the lower bits of the hash.
Collisions are resolved using linear probing. Before following
the pointer to the tuples and comparing group keys, we first
compare the salt. Only if the salt is equal do we follow the
pointer to compare group keys. For uniform hash functions, the
salt effectively reduces the chance of having to compare group
keys of tuples that do not match by a factor of 216 = 65,536.
This is most effective with linear probing. In a bucket-chained
hash table, the salt requires either a bitwise OR, which would
flip more bits and, therefore, increase the chance of false pos-
itives, or a 16-bit bloom filter that uses just 4 bits of the hash.
Usually, performance degrades as the hash table fills up due
to increased collisions, causing more group key comparisons
and more random access. This optimization allows almost all
collisions to be resolved much more efficiently.

Partitioning. Rather than partitioning tuples when the hash
table is reset like IBM DB2 BLU [32] and HyPer [12], our
implementation directly materializes tuples into partitions that
use the proposed page layout. By materializing tuples directly
into partitions, we avoid copying tuples more than once.
Note that the partitioned data is in row-major representation,
while the incoming data is in column-major representation:
the conversion of column-major to row-major takes place
simultaneously while partitioning the data. This optimization



is possible because the hash table indirectly accesses tuples
as shown in the Radix Partitioned Page Layout of the Salted
Linear Probing Hash Table in the right-hand side of Figure 3.

The partitions are determined by radix, i.e., a few of the
middle bits of the hash that were not yet used for the salt
(upper bits) or for the offset into the hash table (lower bits).
It is important that any of the used bits do not overlap, as this
would lead to more collisions and/or reduced effectiveness
of the salt. The number of bits used to partition depends
on the number of active threads and whether the size of the
intermediates is larger than memory, as will be explained later.
Because the data is partitioned after pre-aggregation rather
than before, partitions are of roughly equal size.

RAM-Oblivious. We reset the hash table once it is two-
thirds full. This threshold was experimentally determined.
Only the array of 64-bit entries is reset while the tuples stay
in place; therefore, resetting is an inexpensive operation. The
pages that store these tuples can now be unpinned, as the tuples
are no longer active in the hash table. With this approach,
partitions are never explicitly written to storage by the aggre-
gation operator, which implementations like IBM DB2 BLU’s
aggregation [32] would do in low-memory situations. Instead,
the buffer manager writes individual pages, rather than entire
partitions, to storage when needed. We analyze the spilling
behavior of our implementation in-depth in Section VII.

This simplifies operator design, as the aggregation operator
is largely unaware of which pages are in memory and which
are on disk. Similar to how cache-oblivious algorithms [34]
are oblivious to the size of the CPU caches, our algorithm
is virtually RAM-oblivious during the Thread-Local Pre-
Aggregation phase: the algorithm’s behavior does not depend
on the memory limit. The only requirement is that the small
fixed-size hash table fits in memory.

During the second phase, Partition-Wise Aggregation, the
memory limit matters, as the question becomes whether one
fully aggregated partition per thread fits in memory. This can
be achieved by over-partitioning, i.e., creating many more
partitions than threads. This keeps the memory pressure low
during the second phase as well. When a partition is fully
aggregated, its results are immediately pushed to the next
operator in the pipeline, freeing up the used pages.

The design of DuckDB’s hash aggregation operator should
degrade performance gracefully as the size of the temporary
query intermediates exceeds the available memory limit, and
only the pages that do not fit are spilled to storage. Our
aggregate implementation has been part of every DuckDB
release since version 0.9.0 and is widely used1.

VI. EXPERIMENTAL SETUP

In this section, we describe our experimental setup. All of
our experiments are run on AWS EC2 using Ubuntu 22.

Hardware. We choose the c6id.4xlarge instance be-
cause its specifications are similar to affordable hardware such
as a laptop. This instance has an Intel Xeon 8375C CPU

1DuckDB source code can be found at https://github.com/duckdb/duckdb

with 8 cores (16 threads), 32 GB of DDR4 RAM, and 1
TB of NVMe storage. We set the tenancy of the instance
to dedicated so that the entire node is reserved, but we
do not use the rest of the node’s capacity. We also use the
available Instance Storage, which is physically attached to the
host, unlike the usual Elastic Block Storage on EC2. This setup
eliminates the noisy neighbor problem that cloud environments
may have; therefore, our results are more consistent.

Data. We create a grouping benchmark using the data
generator from TPC-H, which is incorporated in DuckDB’s
tpch extension. We generate the lineitem table at scale
factors 1, 2, 4, 8, 16, 32, 64, and 128. At these scale factors,
the row count ranges from 6,001,204 to 768,046,921, and the
size of the generated CSV ranges from 0.72 GB to 96.72 GB.

Query. Although aggregation can easily dominate the run-
time of a query, isolating the performance of any relational
operator in a benchmark is difficult because we can often only
reliably observe end-to-end query runtime. This is the case
even if systems have a query profiler because the execution of
multiple operators is interleaved in streaming query engines.
Measuring end-to-end query runtime introduces unwanted and
unrelated overheads, e.g., small overheads such as parsing and
optimizing, scanning base tables, and transferring the result
set through a client protocol. The latter is especially costly for
large result sets, e.g., high cardinality aggregations, and can
easily dominate query execution time [27].

Instead of transferring the result set through a client proto-
col, we could write the result to a table instead, i.e., CREATE
TABLE ... AS. This is slightly better but also introduces a
large amount of overhead in the form of bulk insertion, which
may have a large performance difference across different
systems. Adding a cheap, ungrouped aggregate on top of
the expensive aggregate that we want to measure would be
even better, but in some cases, this allows query optimizers
to remove unused columns, potentially leading to unequal
plans across different systems. Therefore, we have devised the
following benchmark query:
SELECT group_key1, group_key2,

..., group_keyG,
ANY_VALUE(col1), ANY_VALUE(col2),
..., ANY_VALUE(colC)

FROM lineitem
GROUP BY group_key1, group_key2,

..., group_keyG
OFFSET N - 1;

Here, N is the number of unique groups in the query, which has
been precomputed for each grouping. This yields a result set
of exactly one row. Technically, this query is underspecified,
so any single row of the input satisfies the query. However, the
number of unique groups is not known beforehand; therefore,
systems are forced to fully process and discard the first N - 1
groups before emitting a single row. Additional columns other
than group keys are selected using the ANY_VALUE aggregate
function to increase the memory pressure without changing the
number of unique groups.

https://github.com/duckdb/duckdb


TABLE I
OUTPUT SIZE OF GROUPING LINEITEM BY DIFFERENT COMBINATIONS OF
COLUMNS. AN OUTPUT SIZE OF 25.00% MEANS THAT THE NUMBER OF

ROWS IN THE OUTPUT IS EQUAL TO 0.25 TIMES THE INPUT SIZE.

Number Grouping Size
1 l returnflag, l linestatus 4 rows
2 l partkey 3.33%
3 l partkey, l returnflag, l linestatus 10.58%
4 l suppkey, l partkey 13.33%
5 l orderkey 25.00%
6 l orderkey, l returnflag, l linestatus 34.87%
7 l suppkey, l partkey, l returnflag, l linestatus 36.17%
8 l suppkey, l partkey, l shipinstruct 45.34%
9 l suppkey, l partkey, l shipmode 61.83%

10 l suppkey, l partkey, l shipinstruct, l shipmode 88.56%
11 l orderkey, l partkey 99.99%
12 l orderkey, l suppkey 99.99%
13 l suppkey, l partkey, l orderkey 100.00%

Groupings. We group the lineitem table by different
combinations of columns, shown in Table I. We have two
variants of each grouping. The thin variant selects only the
group columns. The wide variant selects all other columns
using the ANY_VALUE aggregate function.

With these groupings, the thin and wide variants, and dif-
ferent scale factors, this benchmark represents a wide variety
of aggregations, ranging from low to high memory pressure.
For example, the lowest memory pressure is the thin variant of
grouping by l_returnflag, l_linestatus, which only
materializes four rows of two columns. The highest memory
pressure is the wide variant of grouping by l_suppkey,
l_partkey, l_orderkey, which essentially materializes
the entirety of the lineitem table. All of our experiments
are publicly available on GitHub2.

VII. LOADING, SPILLING & ALLOCATING

In this section, we take a closer look at how the proposed
unified memory management operates.

Loading & Spilling. We first examine how DuckDB’s
buffer manager decides to load and spill pages when running
an aggregation workload. The workload we have selected for
this experiment is thin grouping 4 at scale factor 128 because
it requires materializing a fair amount of intermediate data but
not so much that the entire aggregation becomes bottlenecked
by I/O. This grouping only selects l_orderkey, which
is just over 1.5 GB in DuckDB’s file format, which uses
lightweight compression techniques [22]. We consider two
scenarios: In the first scenario, a single connection runs this
grouping 10 times in a row, with DuckDB configured to have
4 threads and a memory limit of 3.5 GB. DuckDB is rarely
used as a server: a single connection is a common use case for
local data set analysis. We have chosen a memory limit of 3.5
GB, as this is approximately the total size of the intermediates
needed for this grouping and, therefore, necessitates evicting
pages. This memory limit yields more interesting results than
a high or low memory limit, as, in theory, not much I/O is
needed to complete the query, but wrong decisions by the
buffer manager may cause unnecessary I/O. In the second

2Experiments: https://github.com/lnkuiper/experiments/tree/master/oocha

scenario, four connections simultaneously run this grouping
10 times in a row, with DuckDB configured to have 4×4 = 16
threads and a memory limit of 4× 3.5 = 14 GB.

As mentioned in Section III, DuckDB’s eviction policy is
to evict pages using a concurrent LRU queue. Pages of all
types are added to the same queue: persistent, temporary,
fixed- and variable-size; no distinction is made between the
types of pages. Eviction policies have been researched in-
depth in the context of traditional buffer pools, which only
store persistent data but not in the context of temporary data.
These policies try to keep often-used persistent data in memory
to speed up access. Temporary data is short-lived; therefore,
having a different policy for these pages may be beneficial.
We will refer to DuckDB’s default eviction policy as the
Mixed policy. For this experiment, we implement two more
eviction policies, which store persistent and temporary pages
in two separate LRU queues. TemporaryFirst evicts temporary
pages before evicting persistent pages. PersistentFirst evicts
persistent pages before temporary pages. We show the results
of this experiment in Figure 4.

With a single active connection, Mixed, TemporaryFirst,
and PersistentFirst have similar respective execution times of
69.8s, 72.1s, and 66.8s. The size of the temporary file was
observed to stay under 500 MB for PersistentFirst and under
2 GB for TemporaryFirst and Mixed. Persistent data is read
at the start of each query during thread-local pre-aggregation.
Only temporary data is needed during partition-wise aggrega-
tion once all data is materialized. Evicting persistent data does
not require writing to storage because it is already stored in
the database file. Evicting temporary data, on the other hand,
requires writing it to storage and is, therefore, more costly.
As we can see, this results in PersistentFirst being the most
efficient strategy when a single connection is active.

With four active connections, Mixed, TemporaryFirst, and
PersistentFirst have varied respective execution times of
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Fig. 4. Visualization of DuckDB’s memory when repeatedly performing thin
grouping 4 at scale factor 128 in a single-connection and multi-connection
scenario with different buffer eviction policies.

https://github.com/lnkuiper/experiments/tree/master/oocha


TABLE II
EXECUTION TIME IN SECONDS FOR THE THIN VARIANT OF ALL GROUPINGS AT SCALE FACTORS 2, 8, 32, AND 128. LOWER IS BETTER. THE LOWEST

EXECUTION TIMES ARE HIGHLIGHTED IN BOLD. ‘A’ DENOTES THAT THE QUERY WAS ABORTED. WE SUMMARIZE BY NORMALIZING EXECUTION TIMES
TO DUCKDB AND THEN TAKING THE GEOMETRIC MEAN.

SF 2 8 32 128
System Du Cl Hy Um Du Cl Hy Um Du Cl Hy Um Du Cl Hy Um

Grouping 1 0.01 0.08 0.01 0.02 0.03 0.27 0.05 0.04 0.14 1.10 0.14 0.16 0.54 4.06 0.54 A
2 0.08 0.04 0.13 0.04 0.44 0.16 0.66 0.19 2.03 0.75 2.86 0.68 10.80 4.04 12.83 A
3 0.13 0.30 0.20 0.13 0.58 1.21 1.00 0.51 2.78 6.35 4.28 2.24 14.49 42.47 348.10 A
4 0.12 0.08 0.16 0.07 0.58 0.29 0.83 0.28 2.86 1.63 3.38 1.22 22.06 9.80 231.86 A
5 0.05 0.08 0.07 0.05 0.18 0.29 0.36 0.16 0.74 1.57 1.66 0.54 3.17 9.41 6.86 A
6 0.08 0.35 0.21 0.15 0.30 1.42 0.81 0.55 1.27 7.32 3.27 2.12 5.80 48.79 213.41 A
7 0.17 0.37 0.28 0.23 0.72 1.56 1.36 0.87 3.42 8.32 5.61 4.32 24.62 51.57 457.52 A
8 0.23 0.36 0.27 0.20 0.97 1.51 1.39 0.78 5.25 8.11 5.72 3.44 65.97 49.49 412.86 A
9 0.16 0.37 0.30 0.21 0.74 1.53 1.58 0.78 3.59 8.01 6.42 3.47 32.77 46.51 444.50 A

10 0.25 0.50 0.41 0.38 1.10 2.06 1.96 1.50 5.78 11.34 169.63 14.98 89.27 77.27 576.68 A
11 0.13 0.13 0.37 0.18 0.59 0.51 1.71 0.65 2.72 2.59 6.94 2.86 21.38 18.43 413.54 A
12 0.13 0.13 0.36 0.18 0.59 0.52 1.73 0.65 2.65 2.59 6.80 2.84 21.89 18.22 411.58 A
13 0.15 0.17 0.38 0.22 0.64 0.70 1.80 0.79 2.87 3.64 7.24 3.39 22.20 28.31 432.33 A

Geometric Mean 1.00 1.69 1.80 1.13 1.00 1.53 1.98 0.98 1.00 1.69 2.17 0.94 1.00 1.48 8.74 ANormalized to DuckDB

216.4s, 135.9s, and 293.5s. This is the opposite order of the
previous scenario. The size of the temporary file was observed
to stay under 8 GB for all three policies. In the figure, it
appears like all persistent data is evicted at some point, but
some of it is always loaded into memory, although the amount
is so small that it is not visible. When most persistent data
is evicted, thread-local pre-aggregation slows down because
every read requires accessing storage. This behavior causes
memory to clog up with temporary data, and overall query
throughput suffers due to excessive thrashing, i.e., loading and
spilling pages over and over. In the remainder of our exper-
iments, DuckDB uses the Mixed eviction policy as a decent
compromise between PersistentFirst and TemporaryFirst.

Allocation Performance. Allocation latencies can signifi-
cantly affect query performance [21]; therefore, we perform
a micro-benchmark to investigate how the proposed buffer
manager affects allocations, similar to what was done for
Cooperative Memory Management [13]. We measure the time
it takes to allocate a small region of 262,144 bytes, which is
DuckDB’s fixed page size, and the time it takes to allocate a
large region of 268,435,456 bytes, which is 1,024 times larger.
Timings are averaged over 1,024 allocations. Simply allocating
this using jemalloc [35], DuckDB’s internal allocator, takes
1.5 microseconds for the small region and 1.7 microseconds
for the large region. When routing these allocations through
DuckDB’s buffer manager when ample memory is available,
these allocations respectively take 1.7 microseconds and 2.0
microseconds. The overhead is negligible and can be explained
by bookkeeping, such as incrementing the atomic counter for
the current memory usage.

When we fill up memory by loading persistent data, per-
forming these allocations will cause pages to be evicted.
Performing the small allocation takes even less time in this
scenario: 0.9 microseconds. Only one persistent page needs
to be evicted, which is free because persistent pages are
replicated in storage, and the allocation is immediately reused.

Performing the large allocation, however, now takes 0.9
milliseconds because it causes 1,024 persistent pages to be
evicted. Unlike the previous scenario, the pages cannot be

reused and must, therefore, be deallocated. Deallocations cause
significant overhead, as was also found to be the case for
Cooperative Memory Management [13]. If a page size of
4 KiB was used rather than DuckDB’s default page size
of 256 KiB, the large allocation would have caused 65,536
deallocations instead, causing even more overhead.

Given that the deallocation overhead only occurs when
memory is full and only for the variable-size allocations that
are very sparingly used in DuckDB, we find this overhead
acceptable.

VIII. EVALUATION

In this section, we experimentally evaluate our implementa-
tion and compare it with other implementations. We compare
our system, DuckDB [20] (version 0.9.2), an in-process open-
source DBMS for OLAP workloads that has a vectorized query
execution engine, against three other systems with strong
aggregation performance:
ClickHouse [36] (version 23.11.1), an open-source column-

oriented DBMS for OLAP workloads.
HyPer [11] (version 2023.3), a main-memory-based relational

DBMS for mixed OLTP and OLAP workloads, which
uses data-centric code generation, developed at Technische
Universität München (TUM), now Tableau’s data engine.

Umbra [9] (v0.1 2023-11-21), HyPer’s successor, a disk-
based DBMS with in-memory performance, which also uses
data-centric code generation, also developed at TUM.

We do not compare with traditional database systems such
as PostgreSQL or MySQL as these are orders of magnitude
slower than modern OLAP systems at aggregation for various
reasons, such as large amounts of per-tuple overhead [10].

We have verified that the aggregation query described in
Section VI leads to the same query execution plan in all
systems in the benchmark. We run each query five times and
report the median execution time. If queries do not finish
within 10 minutes, they are timed out.

Thin Groupings. Table II shows the results for the thin
variant of all groupings. We show only scale factors 2, 8, 32,
and 128, as a wider table does not fit. We summarize the



TABLE III
EXECUTION TIME IN SECONDS FOR THE WIDE VARIANT OF ALL GROUPINGS AT SCALE FACTORS 2, 8, 32, AND 128. LOWER IS BETTER. THE LOWEST

EXECUTION TIMES ARE HIGHLIGHTED IN BOLD. ‘A’ DENOTES THAT THE QUERY WAS ABORTED. ‘T’ DENOTES THAT THE QUERY TIMED OUT AFTER 600
SECONDS. WE SUMMARIZE BY NORMALIZING EXECUTION TIMES TO DUCKDB AND THEN TAKING THE GEOMETRIC MEAN.

SF 2 8 32 128
System Du Cl Hy Um Du Cl Hy Um Du Cl Hy Um Du Cl Hy Um

Grouping 1 0.04 0.19 0.03 0.02 0.16 0.67 0.10 0.06 0.63 2.57 0.38 A 2.57 9.91 1.52 A
2 0.42 0.34 0.23 0.22 2.25 1.45 1.07 0.77 52.79 18.41 211.11 A 347.28 111.66 499.04 A
3 0.43 0.59 0.27 0.23 2.30 2.56 1.25 0.91 30.00 26.39 243.30 A 256.29 133.50 T A
4 0.53 0.51 0.27 0.23 2.77 2.43 1.28 0.91 53.46 26.19 255.55 A 350.96 122.97 T A
5 0.25 0.58 0.23 0.13 0.80 2.96 0.89 0.44 4.63 30.16 3.13 A 67.56 A 287.87 A
6 0.23 0.72 0.29 0.17 1.01 3.24 1.22 0.67 4.96 33.20 4.56 A 72.69 150.75 378.23 A
7 0.51 0.75 0.35 0.29 2.56 3.34 1.76 1.22 30.61 31.85 382.80 A 260.12 A T A
8 0.87 1.01 0.42 0.36 3.94 4.57 1.96 1.47 68.49 38.79 487.08 A 407.26 A T A
9 0.59 0.88 0.47 0.32 3.22 4.24 2.18 1.41 46.12 36.37 451.81 A 331.08 A T T

10 0.75 1.00 0.61 0.42 3.69 4.91 2.69 1.74 64.84 43.70 585.54 A 399.46 A T A
11 0.64 0.83 0.61 0.38 3.22 3.75 2.71 1.60 60.04 36.41 530.67 A 396.53 A T A
12 0.62 0.79 0.62 0.38 3.32 3.76 2.70 1.58 60.73 36.00 533.54 A 382.09 A T A
13 0.66 0.83 0.60 0.38 3.20 3.85 2.67 1.59 54.55 37.00 534.56 A 359.95 A T A

Geometric Mean 1.00 1.53 0.77 0.54 1.00 1.45 0.70 0.45 1.00 1.06 4.54 A 1.00 A T ANormalized to DuckDB

execution times per scale factor by first normalizing to, i.e.,
dividing by, DuckDB’s execution time and then taking the
geometric mean, as this weighs each query fairly [37].

For scale factors 2, 8, and 32, the data fits entirely in
memory, and the execution times of the systems, as well as the
normalized geometric means, are similar, with DuckDB and
Umbra being the fastest. One exception is HyPer for grouping
10 at scale factor 32, which takes an order of magnitude longer
than the other three systems. For this grouping, HyPer has
already switched to its external aggregate implementation. We
observed HyPer’s external aggregate to use a minimal amount
of memory, less than 2 GB out of the available 32 GB.

For scale factor 128, some of the larger groupings do not
fit in memory anymore. Note that the exact point where
this happens differs per system. For almost all groupings at
this scale factor, HyPer uses its external aggregation, which
is much slower than its in-memory aggregation. Therefore,
HyPer can barely finish some of the queries within the 600-
second timeout, resulting in a much higher normalized geo-
metric mean. Umbra does not yet have an external aggregation
implementation and has to abort queries at this scale factor.
Both DuckDB and ClickHouse are able to finish all groupings
well within the 600-second timeout.

We now look closer at the scaling behavior for specific
thin groupings. In Figure 5, we show the execution times for
the thin variants of groupings 3, 6, and 13 at scale factors
1 through 128. Note that both the x- and y-axis are on a
logarithmic scale. The data fits in memory up to scale factor
32, and all four systems show linear scaling, as expected
from hash aggregation. HyPer switches to external aggregation
for all three groupings at scale factor 128, and, surprisingly,
despite yielding a smaller result size than grouping 6 and 13,
HyPer uses external aggregation for grouping 3 at scale factor
64. This switch results in a significant performance cliff, as
execution time increases by more than 10x, despite the data
size growing by only 2x. For DuckDB and ClickHouse, there
is a much less noticeable performance ‘bump’, as execution
times only increase by ≈ 3x. Umbra runs out of memory and
is unable to complete the queries at scale factors 64 and 128.

This figure shows that switching from an in-memory to an
external algorithm is not robust as it causes performance cliffs:
large and sometimes unpredictable spikes in performance.
DuckDB’s hash aggregation is much more robust.

Wide Groupings. Table III shows the results for the wide
variant of all groupings at scale factors 2, 8, 32, and 128.
Compared to Table II, there is a clear difference, as all execu-
tion times are higher due to having to scan and materialize the
additionally selected columns. Like before, the execution times
of the four systems are similar at the lower scale factors, 2
and 8, with Umbra being the clear winner, as evidenced by the
execution times and normalized geometric mean. Out of the
four systems here, DuckDB is the only system that does not
use just-in-time (JIT) compilation for aggregate functions for
portability reasons. JIT compilation is known to significantly
speed up aggregation performance [38], which explains why
DuckDB’s execution times are slightly higher.

At scale factor 32, there are already significant differences in
execution time. HyPer switches to its external aggregation for
most queries due to the increased memory pressure caused by
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Fig. 5. Execution times for the thin variant of groupings 3, 6, and 13 at scale
factors 1 through 128 (log-log scale). Lower is better. ‘A’ denotes that the
query was aborted.



selecting additional columns. As a result, HyPer is slower than
ClickHouse and DuckDB by an order of magnitude. Umbra
cannot complete any grouping at this scale factor and beyond.

ClickHouse performs well at scale factor 32, having the
fastest execution time on most queries and almost the lowest
normalized geometric mean if it were not for groupings 5 and
6. However, its strategy to achieve this performance does not
hold up, as ClickHouse has to abort most queries at scale
factor 128. At scale factor 128, DuckDB is the only system
that can complete the benchmark within the 600-second time
limit and the 32 GB of main memory available.

We again look at the scaling behavior for the same group-
ings as before, 3, 6, and 13, but now the wide variants,
in Figure 6. All systems show linear behavior for the first
few scale factors. However, performance degradation starts
earlier, at around scale factor 32, although this depends on
the number of rows the grouping yields. HyPer switches to
external aggregation for the higher scale factors for all three
groupings. It switches at scale factors 32, 64, and 16 for
groupings 3, 6, and 13, respectively. The external aggregation
sharply degrades performance compared to the in-memory
aggregation and finally causes HyPer to time out at scale
factor 128 on two out of three groupings. Umbra is not able
to complete any of the groupings at scale factor 32 and above.

ClickHouse scales well, especially for the higher scale fac-
tors, and although its aggregation strategy can utilize storage
to be able to process larger-than-memory intermediates, it still
runs out of memory for the largest grouping, grouping 13,
at scale factor 128. DuckDB does not have this problem,
and again, although DuckDB has a slight performance bump
around scale factor 32/64, it can complete all groupings at the
highest scale factor without problems, with more than three
minutes to spare until the 600-second timeout.
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Fig. 6. Execution times for the wide variant of groupings 3, 6, and 13 at
scale factors 1 through 128 (log-log scale). Lower is better. ‘T’ denotes that
the query timed out after 600 seconds. ‘A’ denotes that the query was aborted.

IX. CONCLUSION & FUTURE WORK

In this paper, we have discussed temporary query inter-
mediates, specifically for OLAP systems. We have identified
that current approaches for intermediates have limitations that

impair memory utilization and efficient spilling. To address
these problems, we have proposed Unified Memory Manage-
ment, which unifies memory management for temporary and
persistent data and a page layout that can be lazily spilled
without serialization overhead. Together, these techniques al-
low blocking operators to utilize all available memory for
intermediates and to efficiently and lazily spill them. This
allows operator implementations that need to process larger-
than-memory intermediates to do so without sacrificing in-
memory performance.

We have integrated both techniques into DuckDB’s paral-
lel hash aggregation. We have experimentally evaluated our
implementation and compared it against three systems with
strong aggregation performance, using a benchmark with a
diverse aggregation workload and varying amounts of unique
groups. The results showed that DuckDB can aggregate larger-
than-memory intermediates without falling off a performance
cliff. This can be attributed to the proposed techniques and
the high I/O throughput of modern SSDs. The results also
showed that DuckDB’s aggregation is highly competitive when
intermediates fit in main memory, demonstrating that robust
external aggregation performance can indeed be achieved
without sacrificing in-memory performance.

Future Work. The proposed techniques were implemented
and evaluated for OLAP. More research is needed to determine
their viability for OLTP, where smaller page sizes, dirty pages,
and many concurrent writers are common.

Our experimental results showed that the efficiency of
eviction policies is workload-dependent. Prior research in this
area has not considered evicting temporary data. More research
into eviction policies for Unified Memory Management is
needed to determine efficient strategies.

As mentioned in Section V, the same group may be ma-
terialized multiple times during thread-local pre-aggregation,
possibly across multiple threads due to morsel-driven paral-
lelism. These additional materializations can cause the size of
the temporary query intermediates to grow large, potentially
causing unnecessary I/O. This can be mitigated by adaptively
exchanging and aggregating partitions early during this first
phase if the memory limit would otherwise be exceeded,
reducing the size of the intermediates.

Besides hash aggregation, other blocking operators can
benefit from the techniques proposed in this paper, such as
the join, sort, and window operators. We believe that, by
integrating the techniques presented here, these operators can
also support the processing of larger-than-memory temporary
query intermediates in a performance-robust way.

Finally, when probing two large hash tables in the same
pipeline, for example, or performing a high cardinality aggre-
gation over a large join, multiple memory-intensive operators
are active simultaneously. In such cases, coordination is re-
quired to ensure that the combined memory usage of all active
operators does not exceed the memory limit. An approach that
adapts to such memory requirements during query execution
would be able to assign memory more fairly than a static
approach, and, therefore, utilize memory more efficiently.
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