
Digital Object Identifier 10.1109/MCI.2012.2188586

 Date of publication: 13 April 2012

Hannes Mühleisen
Freie Universität Berlin,
GERMANY

Kathrin Dentler
Vrije Universiteit Amsterdam,
THE NETHERLANDS

© ARTVILLE, DIGITAL VISION

Large-Scale Storage
and Reasoning for

Semantic Data Using Swarms

32 IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE | MAY 2012 1556-603X/12/$31.00©2012IEEE

MAY 2012 | IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE 33

I. Introduction

The success of the Seman-

tic Web leads to ever-

growing amounts of data

that are being generated,

interlinked and consumed. Han-

dling this massive volume is a

serious challenge, where scalable,

adaptive and robust approaches

are needed. Traditional approaches

for handling data are often based

on large dedicated computer sys-

tems which store all required data at one single location and

handle all incoming requests from applications and their users.

While this is a valid approach for limited amounts of data, it is

no longer economically viable for web-scale data due to non-

linear increases in hardware costs. Furthermore, robustness of

a single system is always limited, making these single-node

approaches less suitable for use in the envisioned Web of Data.

The apparent solution is to distribute both data and

requests onto multiple computers. In this case, a method to

create coherence between these computers is required,

designed to make the distributed system appear like a single

large unit to its users. Typically, these methods aim to minimize

communication costs and to maximize the degree of coher-

ence between nodes. Several methods have been researched

and implemented, ranging from master/slave configurations to

unstructured and structured Peer-to-Peer systems where all

nodes share all responsibilities. Each method represents a trade-

off between different dimensions, most commonly scalability,

robustness and adaptivity [1]. Scalability is the system’s ability

to handle increasing amounts of data and requests, robustness is

the ability to tolerate failure, and adaptivity is the ability to

handle different data characteristics and various request pat-

terns without the need for intervention. Sufficient perfor-

mance along these three dimensions is required in a storage

system for web-scale data.

To realize the vision of the Semantic Web, the annotation of

data with machine-processable formal semantics is essential.

From these schema annotations, reasoning engines make

implicit information explicit, bridging the gap between data

and knowledge. When this reason-

ing process is to be applied to

web-scale data, the same require-

ments regarding scalability emerge,

and distributing this task onto

many computers is the only viable

solution. However, fully distribut-

ed reasoning is scarce. Many previ-

ous approaches rely on central

instances orchestrating the reason-

ing process, e.g. in [2], which is

undesirable since these central

nodes are not protected against

failure per se, and their failure would inhibit the entire system

to perform its reasoning tasks. Alternatively, schema informa-

tion is replicated in all participating nodes, which is unfeasible

in cases where the schema information is very large. Consisten-

cy cannot be ensured and any changes to the schema can result

in substantial overhead.

Generally, manually configuring and operating large-scale

distributed systems that potentially comprise of thousands of

nodes is no longer feasible. Self-organizing distributed systems

are able to operate autonomously [1] and are a promising

solution to the challenge of handling distributed systems that

provide large-scale storage and analysis for the web of data.

The problem addressed by this paper is the design of a meth-

od for fully distributed storage and reasoning for Semantic

Web data.

One approach to achieve self-organization is the collective

behavior of individuals that cooperate in a swarm. The overall

goals of the swarm, for example, to find food, are pursued

through independent actions of the individuals based on indi-

rect communication methods. From these local actions, a glob-

al, intelligent and coordinated behavior emerges [3]. Algorithms

inspired by this behavior that aim to imitate the accomplish-

ments of swarms with regard to their self-organization have

successfully been applied to solve hard problems such as rout-

ing in computer networks [4]. As described above, the chal-

lenge of storing, reasoning on and retrieving large-scale

semantic data in a distributed setting is a task that can only be

sufficiently performed in a truly decentralized way. This makes

swarm-based approaches interesting candidates for achieving

Abstract–Scalable, adaptive and robust
approaches to store and analyze the massive
amounts of data expected from Semantic Web
applications are needed to bring the Web of
Data to its full potential. The solution at hand
is to distribute both data and requests onto
multiple computers. Apart from storage, the
annotation of data with machine-processable
semantics is essential for realizing the vision
of the Semantic Web. Reasoning on web-
scale data faces the same requirements as stor-
age. Swarm-based approaches have been
shown to produce near-optimal solutions for
hard problems in a completely decentralized
way. We propose a novel concept for reason-
ing within a fully distributed and self-orga-
nized storage system that is based on the
collective behavior of swarm individuals and
does not require any schema replication. We
show the general feasibility and efficiency of
our approach with a proof-of-concept exper-
iment of storage and reasoning performance.
Thereby, we positively answer the research
question of whether swarm-based approaches
are useful in creating a large-scale distributed
storage and reasoning system.

34 IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE | MAY 2012

the desired self-organization. However, as every distributed sys-

tem has to trade-off between different goals, these properties

come at a cost. Swarm-based approaches trade deterministic

guarantees to achieve their advantages. This might make these

approaches unfit for use in database-like scenarios where the

transactional paradigm has to hold. On the other hand, the

extended work on NoSQL storage solutions, which also trade

away guarantees in favor of scalability, indicates need for this

type of storage [5]. Furthermore, handling web-scale data is a

task whose dimensions are yet unclear and it can become nec-

essary to make further compromises. Also, exhaustive results as

expected from a classical database make little sense in a web

scenario, where the information presented can only be a subset

of the available data.

In this paper, we contribute our novel concept for both dis-

tributed storage and reasoning on Semantic Web data based on

ant-inspired algorithms. We present how the ant’s behavior may

be adapted for distributed storage and reasoning. We strive to

answer our research question of whether swarm-based

approaches are useful in creating a large-scale distributed stor-

age and reasoning system for semantic data. We present our

concept of such a system in the subsequent Section II, and also

contribute a “proof of concept” experiment of the storage and

reasoning concepts on a real-world data set in Section III. We

discuss related work in Section IV, and conclude this paper in

Section V with a discussion of our results showing the feasi -

bility of our approach.

II. Swarm-Based Semantic Storage and Reasoning
Distributed storage, retrieval and reasoning can all be reduced

to locating the place where data is to be stored or retrieved to

answer queries or to apply reasoning rules. To achieve scalabili-

ty in these tasks, the location method needs to be as efficient as

possible, while maintaining robustness and adaptivity. In the

previous chapter, we have argued that self-organization is a

method for sufficient performance in all dimensions. However,

achieving self-organization with a number of pre-defined algo-

rithms reacting on scenarios is not feasible, as the system will

likely face situations not envisioned by its creators. Hence,

built-in computational intelligence that is able to adapt itself to

new situations is desirable [6].

From the large number of nature-inspired methods that

are part of the research in Computational Intelligence, it has

been shown that ant foraging is best suited to solve the loca-

tion problem [7]. In this section, we first introduce basic

Semantic Web concepts and technologies. We then describe

the brood sorting and foraging methods found in ants and

their application to distributed systems. We also show how

they can be used to create a distributed storage system with

reasoning capabilities. Both ant-based distributed storage

and retrieval [8] as well as ant-based reasoning on Semantic

Web data [9] have been proposed separately before. We

describe how both swarm-based distributed storage and

swarm-based reasoning can be combined and extended into

a fully distributed and self-organized storage system for

Semantic Web data with efficient and fully distributed rea-

soning. We show how both approaches can benefit from

each other, forming a new system capable of performing

these tasks with minimal overhead.

A. Semantic Web Concepts and Technologies
Semantic Web research has created the Resource Description

Format (RDF) data model. An RDF graph is a directed graph,

where the nodes are either URIs, literal values such as strings

and integers, or graph-internal identifiers known as blank

nodes. Directed and labeled arcs connect these nodes, URIs are

also used for these labels. RDF provides a highly generic and

flexible data model able to express many other more specific

data structures, such as relational or object-oriented data. More

formally, let U be a set of URIs, L a set of literals and B a set

of blank node identifiers. Any element of the union of these

sets T U L B, ,= is called a RDF term. A RDF triple is a

triple (, ,)s p o , where s U B,! , p U! and o U B L, ,! .

An RDF graph is defined as a set of triples [10]. The query lan-

guage SPARQL has been developed to express complex que-

ries on RDF graphs. For convenient access to the data stored in

such a graph, one may use a so-called triple pattern, which may

contain variables instead of values. Variables are members of the

set V , which is disjoint from .T A triple pattern is a member of

the set () () ()T V U V T V, # , # , . The declarative com-

plex query language SPARQL is based on combining triple

patterns and provides many additional features such as ordering

and filtering [11].

RDF data (ABox) can be annotated by schema information

in the RDF vocabulary description language RDF Schema or

the web ontology language OWL (TBox), allowing an automat-

ed reasoner to make use of the semantics within an RDF graph.

Both ABox and TBox are represented as RDF triples. In many

cases (RDF Schema and parts of OWL 2), the semantics

expressed by the schema can be calculated using a limited set of

pre-defined reasoning or entailment rules. Each reasoning rule

consists of two parts: the antecedent(s) and the consequent. The

antecedents together specify a graph pattern that is to be

matched to an RDF graph, and the consequent specifies how to

generate a new triple, i.e. inference. RDF Schema (RDFS)

entailment rules have one or two antecedents. If all variables

contained in the antecedents are bound to values in the graph,

the rule fires and the inference is created. The closure of an RDF

graph under the RDFS semantics [10] can be derived by apply-

ing all RDFS entailment rules until no new triples are inferred

(fixpoint iteration).

As an example, let us consider the RDFS entailment rule for

rdfs:domain that is shown in Table 1. Whenever an RDF graph

contains a triple that states that a given property p has the

TABLE 1 RDFS entailment rules.

RULE ANTECEDENTS CONSEQUENT
rdfs2 p rdfs:domain c. s p o. s rdf:type c.
rdfs3 p rdfs:range c. s p o. o rdf:type c.

MAY 2012 | IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE 35

rdfs:domain c, and makes use of this prop-

erty in another triple, it can be inferred

that the subject of the other triple is of

rdf:type c. The entailment rule for rdfs:range

works accordingly, but refers to the object

of a triple that contains the property for

which an rdfs:range is defined. Let us con-

sider exemplary social network data that

makes use of the FOAF vocabulary1. Fig-

ure 1 shows a limited extract of the

 corresponding RDF graph. The RDF tri-

ple on the bottom states that Alice
foaf:knows Bob. The two sche-

ma tr iples state that the property
foaf:knows has both rdfs:domain

and rdfs:range foaf:Person.

Based on all triples, it can be inferred

that both Alice and Bob are of type foaf:Person.

B. Swarm Intelligence for Distributed Systems
The basic notion of swarm algorithms is to employ a large

number of simple, lightweight individuals. The overall goal

of solving the specific problem never depends on single indi-

viduals, making those expendable and thus ensuring the

robustness of the solution process. In general, each individual

only has a limited view of its surroundings, e.g. only recogniz-

ing their immediate vicinity. Also, individuals only have limit-

ed memory, forcing them to make decisions based purely on

locally available information with the help of simple rules.

The decision process for a single individual can be described

in very few simple behavioral rules. These three principles

make swarm algorithms scalable with regard to the number

of individuals, robust to the loss of swarm members and adap-

tive to ever-changing environments. While a single individual

has no concept of how to solve the task which the entire

swarm is facing, individuals are able to communicate indi-

rectly by changing their environment. A global solution then

emerges through the sum of all single independent actions

of the individuals.

From a multi-agent perspective, ants are very simple agents

which only communicate indirectly via the landscape, which

serves as a collective memory. The combination of the inde-

pendent local actions of the individuals represents a global opti-

mization mechanism based on positive feedback.

The first method that is useful to solve the location problem

in a distributed system is the foraging method by which ants

search for food in colonies consisting of thousands of individu-

als. A subgroup of the ants is assigned to search for food and

bring it back to the nest. They do so by leaving their nest, ran-

domly changing directions at first. As soon as they encounter

food, they carry it back to the nest. On the way back, they

leave a chemical pheromone trail behind. Now, other ants who

are also searching for food can smell this trail, which leads them

to follow it with increasing probability for increasing phero-

mone intensity. This way, the pheromone intensity of paths to

rich food sources is being reinforced, as more and more ants

use this path. Ants leaving the nest now no longer have to wan-

der around randomly, but can choose between established

paths. Pheromones evaporate over time, so that paths to deplet-

ed food sources will disappear [12].

The second ant-inspired method that can be useful for data

organization is the method by which ants sort their brood. To

optimize care for their brood, ants cluster larvae according to

their development stage. To solve this clustering problem, ants

developed a fully decentralized method where the ants inspect

the larvae nearby and then pick up the most dissimilar one. If

they are carrying around a larva, they are inclined to drop it

where similar larvae are placed.

The advantage of both methods from a distributed system

perspective is that they do not require any shared global data

structure, which would have to be reliably maintained at con-

siderable cost. Rather, these methods can be applied in a fully

distributed system and still maintain a high degree of efficiency

[4]. The tradeoff for this high performance with low require-

ments is a small degree of failure probability, for which a recov-

ery method has to be designed.

C. Storage and Retrieval
Typically, a distributed storage system consists of a large num-

ber of fully independent computers, which are connected by a

network. The general goal for this set of computers (nodes) is

to provide one single storage service, with data being distribut-

ed across all nodes. Since a central gateway to the service pro-

vided by the computer network would be a single point of

failure, each node should be able to serve requests for all data

that is being handled within the system. Storing and retrieving

data items is now a problem of locating the subset of nodes

within the network which are responsible to store the infor-

mation. No single node can have all knowledge that is

required, since this would be both a bottleneck and Achilles’

heel for the system. The problem thus has to be solved through

BobAlice

foaf:Knows

foaf:Person

foaf:Knows

rdfs:Domain rdfs:Rangerdf:Type rdf:Type

FIGURE 1 An exemplary RDF graph.

1FOAF: http://xmlns.com/foaf/spec/

36 IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE | MAY 2012

cooperation of multiple nodes based on partial information

that is locally available. The smaller the subset of involved

nodes, the higher the scalability, and typically a logarithmic

proportion of the total number of nodes is considered suffi-

cient. We have already proposed the application of ant foraging

to solve this problem [8].

The swarm-inspired algorithms are adapted to our distrib-

uted system as follows: The internal storage operations are con-

sidered the swarm’s individuals moving around on a virtual

landscape of nodes connected using network technology. Every

node is connected to a limited number of other nodes that are

its so-called neighbors. The average number of neighbors is

equivalent to the degree of the overlay network topology. The

data to be stored inside this network is modeled as the ant’s

food or larvae, respectively. From a Peer-to-Peer perspective,

this approach represents a compromise between unstructured

and structured networks. Structured, because the pheromone

trails represent a shared data structure dramatically improving

routing efficiency, and unstructured, because a node’s position

in the network is dynamic and its routing decisions are not

determined by a global law, but rather on a best-effort local

heuristic exploiting purely local information.

The ants’ brood sorting method is used for write operations.

We calculate a so-called numerical routing key for each data

item based on a similarity measure. In the general case, the sim-

ilarity measure is a hash function on the literal key value, e.g.

SHA1. Similarity between two items is their numerical dis-

tance of the routing key values. Depending on the notion of

the distance to be used for the stored data, other similarity

measures such as numeric similarity can be used [13].

The routing key then enables the individuals to find an

area of the storage network where similar items are stored

and where new data items are thus placed. In the case of

RDF, graphs to be stored are deconstructed into RDF triples

and each triple becomes part of three separate write opera-

tions, each time with another triple component (subject,

predicate, object) as a routing key. The write operations then

move from node to node until they find a number of triples

sufficiently similar to the triple that is to be stored, and then

they will store it. This leads to clusters of triples that use the

same or similar routing keys being placed on the same or

neighboring nodes, generating a global degree of organiza-

tion in the storage network. The details of this process are

described in [8]. Since routing is not based on a global law

but rather on individual decisions at each storage node,

uneven data or request load of single nodes the storage net-

work is unproblematic. Excess data can be moved off to

neighboring nodes, and corresponding requests will first be

forwarded, with the routing heuristic updating itself to reflect

the new location soon [14].

If a node receives a request for information, it creates an

internal read operation which is also able to move from node

to node similar to the foraging method, thereby regarding

RDF triples as food. Triples can be searched for by specifying

both fixed values and variables for any triple entry. Thus, any

basic graph pattern can be evaluated as a search pattern that is

to be matched against the triples. Again using the similarity

measure, the read operation is able to find the part of the net-

work where the cluster containing the particular data item is

stored, thereby exploiting the locality created by the brood

sorting. Successful operations return their result to the waiting

application at the node where the query originated and trace

back the path they have taken. They use the calculated routing

key to intensify virtual pheromones maintained for each con-

nection to another node on the path taken. These pheromones

are distinct for each key that has been used to store a data item,

the added intensity is dependent on the size of the result set

and the path length. While the operation has not yet arrived

inside the cluster where the searched triple is located, the rout-

ing only has to find this cluster. Hence, pheromone values can

also be compressed through aggregation into ranges, effectively

limiting the space needed to maintain the pheromones.

As in nature, subsequent operations can read these phero-

mones and calculate the likelihood of finding results by travers-

ing that particular connection and pheromone values decrease

over time to simulate evaporation with a configurable decay

rate. Should pheromone values be absent or ambiguous, a ran-

dom node is chosen as a next hop, with the randomness

decreasing as the pheromones get more intense.

The repeated process of requesting different data items from

different locations will create a multi-layered network of pher-

omone paths leading from the nodes where requests were

received to the nodes where data was received. The self-opti-

mizing property of the swarm method used will lead to a near-

optimal path through the network, as shorter paths are assigned

stronger pheromone intensities. The optimal length of the paths

is dependent on the properties of the overlay network, which is

dependent on the amount of neighbor nodes each node has.

Hence, the retrieval costs for often-requested large clusters is

close to the shortest path between the requesting node and the

node storing the data item. For unpopular and small clusters,

the retrieval process can degrade to a random walk, which can

incur costs linear to the amount of nodes in the network once.

Since it is also possible that a retrieval operation starts a circular

movement pattern, its number of steps between nodes is limit-

ed by configuration. Should the operation reach the maximum

number of steps allowed, it fails and reports back to the node it

originated from. It is then able to restart the retrieval operation.

The retrieval process is shown in Figure 2. Here, a request

for a triple with the key #B is received at node S2. From the

pheromones present for this key, the likelihood for finding

matching triples on the connected nodes S1, S5 and S6 can be

calculated. According to this probability distribution, a weight-

ed random routing decision is taken, in this case most likely

routing the request to node S1, from where it is again likely

that the operation will find the searched data item on node S3.

However, should this not be the case, every other node is also

able to calculate these probabilities, thereby achieving an

increasing probability that the operation will find the data item

with further hops.

MAY 2012 | IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE 37

Evaluating complex queries inside this system is still another

area of ongoing work [15], but in a first step we have imple-

mented the storage interface used by a general-purpose SPAR-

QL processing engine. The static optimizations used by this

engine create a sequence of retrieval operations, which are then

executed as series of single retrieval operations for each triple

pattern in the query. The results of all retrieval operations are

collected and added to a temporary graph, on which the com-

plex query can then be evaluated. While effective, efficiency of

this approach can be impaired by large intermediate result sets.

D. Reasoning
Two approaches to infer implicit knowledge are forward and

backward chaining of reasoning rules. The idea behind forward

chaining is to derive and optionally materialize all possible

inferences based on input data, typically when new statements

are inserted into a triple store. In contrast, backward chaining

of reasoning rules is usually performed during query process-

ing, applying rules which lead to the results that are being que-

ried for in reverse order. Backward chaining thus requires less

storage at the cost of longer query processing times. In our

usage scenario, we have large amounts of space available to

store inferred information and aim at fast query processing.

Thus, we focus on forward chaining only.

We previously presented a distributed, forward chaining rea-

soning method based on swarm intelligence [9]. There, individ-

uals of a self-organizing swarm “walk” on the triples of an

RDF graph, aiming to instantiate pattern-based inference rules.

To apply this approach to the self-organized semantic storage

service, we adapt the members of the swarm so that they no

longer employ pheromones to traverse the RDF graph struc-

ture, but to find nodes with triples that they can apply their

inference rules on. Our storage layer does not differentiate

between data (ABox) and schema information (TBox), which

are both encoded as RDF triples. Hence, we assume all schema

information to be part of the entire set of triples that is stored

in the storage network. The forward chaining of reasoning rules

can be applied by swarm individuals, assigning each reasoning

rule to a number of individuals, who subsequently traverse the

network trying to find matches for the antecedents and creat-

ing inferences whenever the rule fires. Contrary to the previous

approach, we are able to re-use the pheromone trails left

behind by the storage operations to efficiently locate the triples

required to calculate inferences.

By relying on a storage layer based on a similar concept, the

proposed reasoning method requires no additional distributed

data structures in the network nor on the nodes and still is able

to express increased efficiency. Regarding the expressivity of

this approach, methods for sound and complete distributed res-

olution on the Description Logic ALC have been proposed

[16]. Supporting the same expressiveness in a swarm-based sys-

tem has also been shown to be feasible together with a formal

discussion of the theoretical correctness of the approach [17].

In our system, each node periodically scans the locally

stored triples for values that are contained in the triple pat-

terns of the antecedents of the pre-configured rules. Each

match becomes a new reasoning operation, which is initialized

with the now partially bound triple pattern or basic graph

pattern. The reasoning operation now tries to find triples that

complete the remaining triple patterns that belong to the basic

graph pattern by moving through the network using the pre-

viously bound values as routing keys. To find potential match-

es, the pheromone paths are exploited to efficiently route

them to their next destination, even if reaching the destination

node requires several hops. Once all variables are bound, the

rule fires and the inferred triples are written to the storage

network using the write operation. This has the advantage that

triples which are already present in the store are not added

again, so that duplicates resulting from the reasoning process,

for example due to several rules that lead to the same infer-

ence, are not added multiple times.

We will demonstrate how the reasoning process is executed

using the RDF Schema entailment rules [10]. As RDFS entail-

ment rules with only one antecedent are trivial, we will focus

only on rules with two antecedents. Triples matching the ante-

cedents could be stored on different nodes, which requires data

exchange between those nodes in order to fire the reasoning

rule. This subset of the RDF Schema specification contains

rdfs:domain and rdfs:range entailments, the transitive

closure and the implications of rdfs:subPropertyOf and

rdfs:subClassOf. All considered rules contain at least

one schema triple, that is antecedents that contain an element

from the RDFS namespace. Table 2 shows the different phases

of our approach for these inference rules. First, the node-local

store is searched in the init phase for triples that can be

matched to antecedents that are schema triples, and new rea-

soning operations are generated and initialized based on the

found triples. In the move phase, these reasoning operations

now search for matching triples, first locally and then traversing

the storage network. For our employed RDFS rules, one (rdfs2,

rdfs3, rdfs7 and rdfs9) or two elements (rdfs5 and rdfs11) need

S1

S2

S3

S6

S5

S4

#B

70%

25%

95%

50%

50%

95%
10%

85%

#B?

FIGURE 2 Network structure with routing probabilities.

38 IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE | MAY 2012

to match; they are printed in bold and underlined in the table.

If a reasoning operation encounters a match, it creates an

inference.
Regarding our foaf example from Section II-A, in the init

phase, two reasoning operations are generated: one for the

domain axiom and one for the range axiom. In the move
phase, these reasoning operations search for triples that contain

the necessary elements for their inference rules to be applied.

Both the domain and the range reasoning operations now

search for occurrences of the predicate foaf:knows. Let us

assume that data using this predicate does not occur at the local

node, so that the reasoning operations migrate to other nodes

searching for it. Whenever a match is found, the reasoning

operation creates a newly derived triple. For example, the rea-

soning operation responsible for the domain axiom finds a tri-

ple Alice foaf:knows Bob and infers that the subject of

this triple, i.e. Alice is of type foaf:Person.

A more formal definition of the reasoning process is given as

pseudocode. The process consists of two phases: First, the initializa-

tion phase scans the local storage on every node for ABox (sche-

ma) triples, and instantiates reasoning operations that move

through the network. This process is given in Algorithm 1. For a

set of reasoning rules, the local storage is scanned for triples match-

ing the init pattern of the reasoning rule (Line 3), which is part of

the configured rules given in Table 2. For each matching triple, the

found values are bound to the pattern, and a new reasoning ant is

spawned with this pattern and sent on its way (Line 7).

The process for handling these reasoning ants on every

node they visit is given in Algorithm 2. Here, the local stor-

age is checked for triples matching the move pattern (Line 8).

For every match on the current node, the match is bound to

the antecedent pattern, and a child reasoning ant is spawned

(Line 12). If no matches are found, the reasoning ant is rout-

ed to the node storing matching data using a routing key

from the move pattern. Both move pattern and routing key

are also pre-defined in the current reasoning rule set. If the

antecedent pattern is fully bound, the resulting triples can

be created using the bound values from the antecedent and

the static values from the consequent (Line 5). The new in-

ferred triple can now be written using the write operation

described above.

Our approach has several advantages: 1) it is fully decentral-

ized, since every node that happens to store a part of any com-

patible schema will create the corresponding reasoning

operations, which do not need to be controlled in any way; 2)

it does not require the replication of schema information; 3) it

shows “anytime” behavior, generating sound inferences that can

be queried for during the reasoning process, with the degree of

completeness increasing over time. New triples can be added to

the store at any time, leading to new inferences. When triples

are deleted, we currently cannot trace and delete the inferences

ALGORITHM 2 Reasoning Operation—Move Phase.

Require: Partially bound reasoning rule rb

Require: Hop limit hmax

1: h 0!

2: a antecedent r()b!

3: p movePattern a()!

4: if allBound a() then

5: return bind consequent r a((),)b

6: end if

7: while h h< max do

8: s localRead p()t !

9: for all t st! do

10: pp bind t(,)b !

11: r r p p\b b! ,

12: createInferencingAnt r()b

13: end for
14: move routingKey p(())

15: h h 1! +

16: end while

ALGORITHM 1 Reasoning Operation—Initialization Phase.

Require: Set of reasoning rules sr

1: for all r sr! do

2: p init Pattern antecedent r(())!

3: s localRead p()t !

4: for all t st! do

5: p bind p t(,)b !

6: r r p p\ bb ! ,

7: createInferencingAnt r()b

8: end for

9: end for

TABLE 2 Application of RDFS entailment rules.

RULE INIT MOVE INFERENCE

rdfs2 p rdfs:domain c. S p O. s rdf:type c.

rdfs3 p rdfs:range c. S p O. o rdf:type c.

rdfs5 P1 rdfs:subPropertyOf p2 p2 rdfs:subPropertyOf p3. p1 rdfs:subPropertyOf p3.

rdfs7 p1 rdfs:subPropertyOf p2. S p1 O. s p2 o.

rdfs9 c1 rdfs:subClassOf c2. s rdf:type c1 . s rdf:type c2.

rdfs11 c1 rdfs:subClassOf c2 . c2 rdfs:subClassOf c3. c1 rdfs:subClassOf c3.

MAY 2012 | IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE 39

that they caused, thus only monotonic logics are supported.

This problem could be solved by adding a time stamp to each

new inference, so that triples that are not re-inferred can be

deleted after a while.

The advantages of our approach are gained by relinquishing

completeness guarantees. By relying on the pheromone trails

also used by the storage operations, the reasoning operation

cannot guarantee that a part of a basic graph pattern that may

be present somewhere in the network is actually found. How-

ever, at web-scale, incomplete reasoning methods have been

found to be advantageous due to the gained robustness and

scalability, and partial reasoning results are often useful as well

[18, 19]. Furthermore, triples that are frequently requested have

stronger pheromone paths leading to them, enabling the rea-

soning operation to find these triples more reliably. This leads

to inferences on heavily-used data being calculated more

quickly than others, while still maintaining the full adaptivity

and robustness of our approach.

E. Stochastic Scalability Analysis
To determine the theoretical performance of routing heuristics,

we will now perform a stochastic analysis of our operations. To

this matter, we describe the average case performance of the

retrieval operation. Consistent with distributed systems

research, the unit of cost for this analysis will be hops, that is

the amount of transitions of the operation between nodes [20],

[21]. Typically, a logarithmic relationship between the amount

of nodes in the system and the average hops required to find a

data item is required for scalability.

Since a request can be started at every node and results can

be on any node in the network, the cost for any retrieval oper-

ation is at least the distance between the nodes in the network.

In the average case, this distance is the average path length in

the network. Disregarding the possibility of the network graph

having small-world or scale-free properties, we assume the

average path length in random networks as our average dis-

tance from start to target node. The average path length in a

random network lER (and also the average distance between

nodes) is calculated as follows [22]:

(,)
ln

ln
l N k

k

N

2
1

ER G H
G H

c
=

-
+

with N being the number of nodes, c being the Euler-

Mascheroni constant (.0 5772.) and kG H being the average

connectivity in the network (equivalent to the average number

of neighbor nodes).

Since our routing method is based on positive feedback, we

can assume p f to be in the range [, .]0 0 5 . For every step on

the way from the origin to the destination node, three out-

comes of the heuristic-supported routing process are possible:

Positive, where the operation got one step closer to its destina-

tion, Neutral, where the amount of steps remaining is

unchanged, and Negative, where the operation now is one step

further away from the destination. Since network connections

are defined to be bidirectional, a step in the wrong direction

can add at most one additional step to the remaining path

length. However, the distribution between neutral and negative

outcome is unknown, we therefore introduce a second param-

eter, pn . The probabilities for each case are thus as follows:

 ❏ ()p positive p1 f= -

 ❏ () * ()p neutral p p1f n= -

 ❏ () *p negative p pf n=

For a single step in the network, the total impact i on the

rema in ing pa th l eng th i s t hu s c a l cu l a t ed a s

() (*)i p p p1 f f n=- - + . If the assumption of p f being at

most 0.5 holds, we can see that pn has to be 1 in order for the

improvement i to evaluate to 0. However, it is unlikely that

every mistake adds another step to the operation’s path, and

hence we can safely assume pn being smaller than 1. If this

assumption holds, the improvement i is always negative. Con-

sequently, every routing operation will bring the operation

closer to its destination.

The expected value for the average hop count to retrieve an

arbitrary element from the network is then the fraction of the

average path length by the absolute value of the expected

reduction of the remaining path length per hop.

hops(, , ,)
() (*)

(,)

| |
N k p p

p p p

l N k

1
f n

f f n

ER
G H

G H
=

- - +
e o.

For example, in a network of 10,000 nodes with an average

amount of 10 neighbors, the average path length inside the

network is 10. If we assume a high routing error probability of

40%, and a realistic 50/50 distribution between neutral and

negative cases, we expect on average 15 hops to reach the node

where matching data is stored, or nine more than required

from the network structure.

To come back to our stochastic analysis of the average

amount of hops required to route any request from the node it

was created on to the node storing matching data, we have

shown the average amount of hops required to perform this

task within our swarm-based system. As we have seen, the aver-

age amount of hops is dominated by the average path length,

since the probabilities are independent of the network size.

Hence, the overhead produced by our swarm-based approach is

constant with regard to the network size, and thus our

approach can be considered scalable.

F. Network Management
To create the overlay network, we propose a distributed net-

work bootstrap protocol: New nodes are given the address of a

“bootstrap” node that is already part of the network. The new

node can now retrieve a list of neighbor nodes from the boot-

strap node and request its addition to this list. This request is

granted if the bootstrap node has not reached its neighbor

upper limit as per its configuration yet. This process is then

recursively repeated on the newly known nodes until the num-

ber of neighbors on the new node has reached the neighbor

lower limit, also defined in the node configuration. If the num-

ber of bootstrap nodes is limited, this algorithm uses preferential

40 IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE | MAY 2012

attachment to create a power-law network structure [23]. Nodes

maintain connections to their neighbor nodes, and nodes not

responding are removed. If the number of neighbors should fall

below the lower limit, the bootstrap process is resumed.

G. Summary
We have designed the operations within the proposed distributed

system according to behavior found in ants for foraging and brood

sorting. These behavioral descriptions adhere to the general swarm

properties with landscape-coordinated actions of large numbers of

individuals with limited view. Through the separation of the virtu-

al landscape onto many nodes with a individually managed limit-

ed data structure, we have removed global state from the network,

which is a major hindrance for scalability, while maintaining statis-

tical efficiency. By design, storage, retrieval and reasoning opera-

tions as described above also do not require global state, and every

information they require can be calculated on the node the opera-

tion is currently executed on. Therefore, the design dimensions for

distribution – scalability, robustness and adaptivity are met for stor-

age, retrieval and reasoning with data in the RDF model.

Scalability to the amount of data that can be stored in the net-

work only depends on the sum of storage available on the indi-

vidual nodes. Should this space become the limiting factor, new

nodes can be added using our bootstrap protocol without affect-

ing the entire network. As soon as the new node finishes the

bootstrap protocol, the system-inherent randomness will lead to

operations being routed to this node. As soon as data is placed on

the new node, subsequent retrieval operations will create the

pheromone paths leading to this data. This makes this new data

efficiently available for retrieval as well as for reasoning operations.

Should individual nodes fail, new operations cannot be

routed to these nodes anymore, and operations will have to be

routed to the neighbor node with the second-strongest phero-

mone path from the neighbor list. Again, this does not affect

the other nodes in the network, and after a limited time, opera-

tions would have created new paths “around” the unresponsive

node, expressing the sought-after robustness of the proposed

system. To keep the data formerly stored on this node available,

a purely local replication scheme may be used.

Finally, adaptivity to skewed data is also possible: For example,

if the distribution of routing keys is very uneven in the stored

data, the data for this key may likely exceed the storage capacity

of a single node. In this case, this node can individually decide to

move a portion of the data to neighboring nodes. Pheromone

paths will adapt to this new distribution in this area of the net-

work, again keeping all reconfiguration in a very limited area of

the network. Furthermore, pheromone paths will become stron-

ger for much sought-after data. Operations requesting this data

will exhibit a higher efficiency than operations for less popular

data, leading to the designed statistical efficiency of the system.

The trade-off for these characteristics is the potential for

failure, which can lead to failed retrieval operations, misplaced

data items, and missed inferences. However, retrieval operations

can always be restarted until the data is found and misplaced

data items can be moved as shown through internal cleanup

operations. Reasoning events are repeated periodically, eventu-

ally finding most possible inferences. Added operations will cre-

ate additional load, making the performance of the entire

system dependent on its capability to handle large amounts of

operations. Should this become a bottleneck, new nodes could

be added.

In spite of the conceptional fitness, the emergence of coor-

dinated collective efficient behavior as aspired by their applica-

tion cannot be proven but only shown in experiments. We

present such experiments in the following section.

III. Experimental Results
To test our concept in a preliminary experiment of large-scale

storage operations and reasoning in a distributed setting based

on swarm intelligence, we have chosen a series of black-box

tests in an experimental setup closely resembling the environ-

ment where the designed system is to operate. This method

was chosen due to the properties of the employed ant algo-

rithms with their inherent randomness, which makes results

from simulations difficult to transfer. We have thus implement-

ed our concept as a stand-alone software program, which was

then run on a number of independent computing nodes rented

from Amazon’s Elastic Computing Cloud (EC2). Using our

bootstrap protocol, the nodes created a network of connections

among them, ensuring that each node is able to reach any

other node in the network over at least one path.

For test data, we have used a subset2 of a crawl from the Web

of Data created for the VisiNav system [24] containing a large

number of resources annotated using the Friend of a Friend

(FOAF) vocabulary3. This subset containing ca. 75K triples was

written using the storage operation described in the above sec-

tion, effectively distributing as well as clustering the data over

the nodes participating in the storage network. The FOAF

vocabulary encoded in RDFS was also written to the network,

so that the reasoning ants could be created by the system. This

data set was chosen because it contains several characteristics we

have identified to be problematic for other—more formal—

approaches: First, it contains live web data, which are unchecked

and messy, and which can bring logic-grounded reasoners

without special optimizations to their limits [25]. Second, since

the data is collected from several sources, the distribution of

terms is unknown a-priori and potentially skewed [26], making

it impossible to configure a conventional large-scale storage sys-

tem beforehand. Third, a large amount of instance data is using

a very small number of classes as defined by the schema, chal-

lenging approaches which move all potential matches for infer-

ence rules to the node storing the rule.

The relatively small size of the data set was deliberate to

allow a large number of repetitions of the experiment, as the

swarm algorithms always exhibit a degree of randomness, and

multiple repetitions have to be performed in order to create a

statistically significant result. As shown in the previous section,

2Test data set available at: http://beast-reasoning.net/a.nt
3FOAF vocabulary specification: http://xmlns.com/foaf/spec

MAY 2012 | IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE 41

the potential amount of data that can be handled is directly

dependent on the number and storage capacity of the nodes

and the throughput of the network connections between them.

Hence, a larger data set would not yield additional insight into

the system’s behavior.

A. Storage and Retrieval
As described above, the main challenge for storage and retrieval

operations in a distributed system is to find the node where a

data item should be placed or searched for while involving as

few nodes as possible. Rather than focusing on evaluating com-

plex queries as described, we issued a retrieval request for a sin-

gle arbitrary but fixed triple already stored inside the network

to every node participating in the storage network. For each

retrieval operation, the nodes taking part in the location of the

triple were recorded. From the total number of nodes, the

number of nodes not able to produce the triple were used to

calculate a response success percentage. We have repeated this

experiment over network sizes ranging from 20 to 150 nodes.

The results for one of these experiments are given in

 Figure 3. For the different network sizes and all queried nodes,

the average and median number of hops required to find a sin-

gle triple are plotted. These average values clearly show the

average number of nodes to be far less than the number of

nodes in the network. The variation in the values between net-

work sizes are attributed to the employed randomness. Also,

the response success percentage is 100% almost every time,

confirming our expectations for the storage performance of

our swarm-based approach. However, for this experiment, the

correlation between network size and hops required was not

linear. We suspect this to be due to randomness inherent in the

swarm algorithms.

Hence, we have repeated the experiments shown in Figure 3

ten times in an effort to sufficiently remove the effects of ran-

domness. Figure 4 shows these results. From the fitted curve, we

can observe a linear increase at worst in the number of hops

required to retrieve a triple over the network sizes. To determine

the overhead created by the swarm-based approach, we have also

statically analyzed the network structure created by the bootstrap

algorithm between the nodes. We have found that the average

path length inside these networks ranged between 1.5 for 20

nodes and 2.5 for 150 nodes. The maximum path length ranged

from 3 for 20 nodes to 4 for 150 nodes. An optimal algorithm

solving the location problem, for example, enjoying a global

view on the network, would have been able to retrieve the data

items using these optimal values for the number of hops. Hence,

we are able to determine the overhead created using our

approach in this experiment to be on average approximately two

times the hops required by the “perfect” algorithm. Furthermore,

previous research on foraging-based distributed systems has

shown that the hop count required scales logarithmically with

the network size in simulations [4]. Even though the number of

nodes in this experiment was insufficient to prove this behavior

for our approach in our limited testbed, a general trend towards

logarithmic behavior is visible.

B. Reasoning
The swarm-based method to perform basic RDFS reasoning as

presented in the previous section was evaluated using a differ-

ent method. From our test data set and the corresponding

schema, we have calculated the RDFS closure using a conven-

tional reasoner, which was able to calculate the closure after

some problematic statements have been removed. The closure

contained approximately the same number of triples as the

original data set. Over 87% of the generated statements con-

nected two resources with the rdf:type property, since

those are most commonly generated according to the

employed RDFS inference rules. In our data set, the number of

rdf:type statements went from 10,173 to 76,734 statements

after inferencing. We have focused on rdf:type statements

in our distributed case, since discerning between static and

inferred triples is non-trivial, as they are located in the same

storage layer. The comparison of the number of these state-

ments between the data generated by the reasoner and the data

generated by the distributed process will yield the degree of

completeness achieved by our reasoning process. To this end,

each node was extended with a method to allow it to be que-

ried for the number of those statements.

For a test protocol, we completed the process of writing the

data set and the schema to the network, which we have limited

to 50 nodes for the reasoning experiments. The previous exper-

iment has shown that the number of nodes in the network is

not the decisive factor in the system’s performance. Then, the

0
1
2
3
4
5
6
7
8
9

20 40 60 80 100 120 140 160
0

20

40

60

80

100

H
op

s
(#

)

R
es

po
ns

es
 (

%
)

Nodes (#)

Average
Median
Responses

FIGURE 3 Hops required to find a triple for different network sizes.

20 40 60 80 100 120 140

2
4
6
8

10
12
14

2
4
6
8
10
12
14

Network Size (#Nodes)

R
ea

d
T

im
e

(#
H

op
s)

FIGURE 4 Hops required to find a triple for different network
sizes—ten test runs.

42 IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE | MAY 2012

reasoning process as described was started on each node, gener-

ating the corresponding reasoning operations. During this phase,

we periodically measured the total number of rdf:type

statements. Even though the basic scale of the experiment is

time, the actual time values are not relevant, since they are high-

ly dependent on the implementation of the system.

Figure 5 plots the results of a single test run, with two lines

marking the number of measured statements already in the data

set as a baseline, as well as the number of measured statements in

the previously calculated full closure of the data set. The plot

commences directly after the reasoning operations have been

started, showing a discrete measurement along a time scale along

with a regression line. The shape of the graph shows the saturation

process typical for swarm-based reasoning [9]. We have repeated

this experiment several times to remove singular influences by the

system-inherent randomness. An aggregation of all experiments is

plotted in Figure 6, converging on the same result as shown

before, with the measurements exceeding the theoretical limit of

possible inferences due to temporarily misplaced duplicates.

IV. Related Work
Our survey of related work is focused on distributed systems

that either provide storage and retrieval on RDF data with

reasoning capabilities or systems that

support distributed reasoning as their

only service.

Battré et al. [27] describe a method to

perform distributed RDFS forward-

chaining reasoning in their BabelPeers

system organized using a distributed

hash table (DHT). Through the proper-

ties of the distributed hash table along

with their distribution scheme, they

show how all triples required to evaluate

the preconditions of the reasoning rules

have to be stored together at one of the

nodes. Thus, they are able to calculate

possible inferences in a completely de-centralized process and

then use the same process to materialize triples into the store.

To solve the load balancing problem inherent in term-based

partitioning, they introduce an overlay tree structure able to

split the data with colliding hash values onto several nodes.

However, this forces them to replicate schema information

across nodes.

Fang et al. [28] presented an approach for distributed rea-

soning, where they first perform reasoning on the schema

(TBox) using a Description Logic (DL) reasoner and then use

the schema closure to create reasoning rules that are applied to

the instances stored in a DHT (ABox). The schema is assumed

to be present on all nodes, allowing any stand-alone reasoner to

create the schema closure locally. To apply the reasoning rules

to the instances, a “prefetch” operation retrieves the instance

data that potentially match the reasoning rules to the local

machine. After calculating the inferences, the results are distrib-

uted to other nodes, where they trigger further reasoning and

reach the closure after multiple iterations of the process. The

main issues with this approach are, again, the need for complete

schema information on all nodes as well as the prefetch of data.

For example, consider all instances in the data using a single

RDF class. If this class is also defined to be the sub-class of

another class, every node needs to load all

the instances of the first class from all

other nodes in order to evaluate the rule.

Kaoudi et al. [29] study the trade-offs

between distributed forward-chaining and

backward-chaining on RDF data on top

of a DHT storage network and present

their own algorithm on distributed back-

ward-chaining with recursive lookup

operations based on values from the query

and the set of RDFS reasoning rules

matching the query. For example, if the

type of a resource is queried, they traverse

the subclass hierarchy of the schema

potentially stored at various parts in the

network, ultimately determining all classes

a resource is an instance of. They also

argue against the scalability of distributed

0 500 1,000
Time

1,500 2,000

0

20,000

40,000

60,000

0

20,000

40,000

60,000

rd

f:T
yp

e
S

ta
te

m
en

ts

Ant-Inferred with Regression
rdf:type Statements Possible
rdf:type Statements in Data

FIGURE 5 Inferred statements over time on 50 nodes.

Ant-Inferred with Regression
rdf:Type Statements Possible
rdf:Type Statements in Data

0

20,000

40,000

60,000

rd

f:T
yp

e
S

ta
te

m
en

ts

0 500 1,000
Time

1,500 2,000

0

20,000

40,000

60,000

FIGURE 6 Inferred statements—repeated experiments.

MAY 2012 | IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE 43

forward-chaining in DHTs based on experimental results with a

very small data set.

Marvin [30] is a platform for distributed reasoning on a

network of loosely coupled nodes. The authors present a

divide-conquer-swap strategy and show that the model con-

verges towards completeness. Their routing strategy combines

data clustering with randomly exchanging both schema and

data triples. On each node, an off-the-shelf reasoner computes

the closure. To handle the problem of inferred duplicates which

cost memory and bandwidth, the authors propose a “one exit-

door” policy, where the responsibility to detect each triple’s

uniqueness is assigned to a single node. This node uses a Bloom

filter to detect previously hosted triples, marks the first occur-

rence of a triple as the master copy and removes all subsequent

copies. For large numbers of nodes, a sub-exit door policy is

introduced, where some nodes explicitly route some triples to

an exit door. This incurs additional bandwidth costs to send tri-

ples to these exit doors.

Kotoulas et al. [26] show that widely employed term-based

partitioning (such as in [27], [28] and [29]) limits scalability due

to load-balancing problems. They propose a self-organized

method to distribute data by letting it semi-randomly flow in

the network, which allows clustered neighborhoods to emerge,

and implemented it on top of Marvin. Both schema and data

triples are moving in the network. A drawback of both Mar-

vin-based approaches is that they solely rely on weighted ran-

domness to ensure that data and schema triples come together

at some point. As the number of nodes increases, we expect this

to become increasingly less likely.

Urbani et al. [31] propose a scalable and distributed method

to compute the RDFS closure of up to 865M triples based on

MapReduce. One of the crucial optimizations is to load schema

triples into the main memory of all the nodes, as the number of

schema triples is usually significantly smaller than the number of

data triples, and RDFS rules with two antecedents include at

least one schema triple. We deliberately abandon this option, as

we aim for an approach that is scalable and adaptive for all kinds

of distributions among schema and data triples. Furthermore,

replicating the schema information is no longer applicable when

dealing with rules that contain two or more data triples as ante-

cedents. In subsequent work[32], the approach was extended to

the OWL Horst [33] semantics, able to deal both with required

joins between multiple instance triples and multiple required

joins per rule. The authors demonstrate the scalability of their

approach by calculating the closure of 100 billion triples.

Salvadores et al. [2] have added support for reasoning for

minimal RDFS rules in the distributed RDF storage system

4store. They include backward-chaining into the basic retrieval

operation in a way very similar to the method presented in

[29]. However, they avoid additional retrieval operations by

synchronizing all schema information between the participat-

ing nodes using a dedicated node. While being able to deliver

impressive scalability in experiments, the need for synchroniza-

tion of schema information jeopardizes the adaptability and the

robustness of their approach.

The same limitation applies to the work of Weaver et al.

[34], who present a method for parallel RDFS reasoning. It is

based on replicating all schema triples to all processing nodes

and randomly partitioning the ABox, ignoring triples that

extend the RDF Schema. The approach generates duplicates.

Hogan et al. [35] follow a pre-processing approach to scal-

able reasoning based on a semantics-preserving separation of

terminological data. They create a set of stand-alone “template”

rules formed from integrating the TBox into the reasoning

rules. These rule sets are saturated with dependent rules and

indexed for quick access, all aimed at a one-pass calculation of

the full closure. They claim that their approach is distributable

by distributing said rule sets to multiple nodes. While the tem-

plate rules use a very similar notion as the reasoning operation

presented here, their separation and template generation is

based on the entire TBox being present at some point.

V. Conclusion and Future Work
We have explained how swarm self-organization is an interest-

ing candidate to solve the challenges on the way towards web-

scale storage, retrieval and reasoning on semantic data. Swarm

algorithms already come with many of the properties desired

for such systems: They are able to scale to an arbitrary number

of operations, they exhibit robustness against failure and can

adapt to almost any environment. In this paper, we have investi-

gated our research question of whether swarm-based approach-

es are useful in creating a large-scale distributed storage and

reasoning system. To this end, we have explained how the oper-

ations for the storage of new data, for the retrieval of data, and

for the reasoning operation can be implemented according to

the principles of swarm intelligence, in particular the foraging

and brood sorting methods used by ants.

Since the non-deterministic mode of operation within

these simulated swarms inhibits a formal proof of our approach,

we have shown a stochastic analysis and experiments with

black-box tests, where the behavior of the system is compared

against a theoretical optimum. The experiments for the storage

and retrieval operations measured the number of hops inside

the storage network taken to retrieve any single triple. Results

showed an almost perfect recall rate and—over several repeated

experiments—an at least linear scaling behavior over the num-

ber of participating nodes. We have further compared these

results with an optimal routing algorithm that always finds the

perfect path inside the storage network. The comparison with

our experimental results showed a two-fold increase in hops for

our approach, which is acceptable in most cases. Thus, we

assume our storage and retrieval operations will scale. To answer

our research question, swarm-based approaches are indeed use-

ful in creating a distributed storage and reas oning system for

Semantic Web data, and we have shown the general feasibility

and efficiency of our approach.

The goal of all reasoning operations on Semantic Web data

is the generation of inferred statements. Thus, we compared the

number of new statements gene rated by our swarm-based

approach to reasoning against the number of inferred

44 IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE | MAY 2012

 statements calculated with a conventional stand-alone reasoner

as a gold standard. These results showed the expected anytime

behavior, where sound inferences are generated over time,

approximating closure.

By comparing our approach to t he related work in distrib-

uted storage and reasoning for Semantic Web data, we made

two observations: First, distributed reasoning is a heavily-

researched topic, answering the need we have identified in our

introduction. Second, a wealth of methods ranging from

MapReduce to random interactions is employed with impres-

sive results, each either mainly focusing on completeness or on

performance. However, these methods still have to be integrat-

ed with sufficient capabilities for storing new data and query-

ing both the explicit and inferred statements, which has so far

not been achieved in a fully decentralized way. We have pre-

sented a novel approach, where the reasoning operations re-use

already present data structures for efficiency in a fully distribut-

ed way without any replication.

From our experiments that were aimed to show the poten-

tial of swarm algorithms for large-scale semantic storage, we are

convinced that this idea is promising and merits further

research in many directions.

V. Acknowledgments
We would like to thank our an onymous reviewers for their

insightful and constructive comments. This research has been

partially supported by the “DigiPolis” project funded by the

German Federal Ministry of Education and Research (BMBF)

under grant number 03WKP07B.

References
[1] C. Prehofer and C. Bettstetter. (2005, July). Self-organization in communica-
tion networks: Principles and design paradigms. IEEE Commun. Mag. [Online].
43(7), pp. 78–85. Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.
htm?arnumber=1470824
[2] M. Salvadores, G. Correndo, S. Harris, N. Gibbins, and N. Shadbolt, “The design and
implementation of minimal RDFS backward reasoning in 4store,” in Proc. 8th Extended
Semantic Web Conf. (ESWC), Heraklion, Greece, G. Antoniou, M. Grobelnik, E. Simperl,
B. Parsia, D. Plexousakis, P. D. Leenheer, and J. Pan, Eds. Springer-Verlag, May 29–June
2, 2011.
[3] M. Dorigo, M. Birattari, and T. Stutzle, “Ant colony optimization,” IEEE Comput.
Intell. Mag., vol. 1, no. 4, pp. 28–39, Nov. 2006.
[4] G. D. Caro and M. Dorigo. (1998). AntNet: Distributed stigmergetic control for
communications networks. J. Artif. Intell. Res. [Online]. 9, pp. 317–365. Available: http://
dx.doi.org/10.1613/jair.530
[5] W. Vogels. (2008). Eventually consistent. ACM Queue [Online]. 6(6), pp. 14–19.
Available: http://doi.acm.org/10.1145/1466443.1466448
[6] L. Rutkowski, Computational Intelligence—Methods And Techniques. New York: Springer-
Verlag, 2008.
[7] M. Mamei, R. Menezes, R. Tolksdorf, and F. Zambonelli. (2006, Aug.). Case studies
for self-organization in computer science. J. Syst. Arch. [Online]. 52(8–9), pp. 443–460.
Available: http://linkinghub.elsevier.com/retrieve/pii/S1383762106000166
[8] H. Mühleisen, A. Augustin, T. Walther, M. Harasic, K. Teymourian, and R. Tolksdorf.
(2010). A self-organized semantic storage service, in Proc. 12th Int. Conf. Information Inte-
gration and Web-based Applications and Services (iiWAS2010). ACM, pp. 357–364 [Online].
Available: http://portal.acm.org/citation.cfm?id=1967542
[9] K. Dentler, C. Guéret, and S. Schlobach, “Semantic web reasoning by swarm
intelligence,” in Proc. 5th Int. Workshop on Scalable Semantic Web Knowledge Base Systems
(SSWS2009).
[10] P. Hayes. (2004, Feb.). RDF semantics. World Wide Web Consortium, Recommendation
REC-rdf-mt-20040210 [Online]. Available: http://www.w3.org/TR/rdf-mt/
[11] E. Prud’Hommeaux and A. Seaborne, “SPARQL query language for RDF,” World
Wide Web Consortium, Recommendation REC-rdf-sparql-query-20080115, Jan. 2008.
[12] E. Bonabeau, M. Dorigo, and G. Theraulaz, Swarm Intelligence: From Natural to Artifi-
cial Systems. Oxford: Oxford Univ. Press, 1999.
[13] H. Mühleisen, T. Walther, and R. Tolksdorf. (2011). Multi-level indexing in a dis-
tributed self-organized storage system, in Proc. IEEE Congr. Evolutionary Computation

(CEC), pp. 989–994 [Online]. Available: http://ieeexplore.ieee.org/xpl/mostRecentIssue.
jsp?punumber=5936494
[14] H. Mühleisen, T. Walther, and R. Tolksdorf. (2011). Data location optimization for a
self-organized distributed storage system, in Proc. 3rd World Congr. Nature and Biologically
Inspired Computing (NaBIC), IEEE Press [Online]. Available: http: //hannes.muehleisen.
org/NaBIC2011-muehleisen-s4-movement.pdf
[15] H. Mühleisen, “Query processing in a self-organized storage system,” in Proc.
VLDB2011 PhD Workshop, co-located with 37th Int. Conf. Very Large Databases (VLDB),
2011.
[16] A. Schlicht and H. Stuckenschmidt. (2010). Peer-to-peer reasoning for interlinked
ontologies. Int. J. Semantic Computing (Special Issue on Web Scale Reasoning), pp. 1–31
[Online]. Available: http://ki.informatik.uni-mannheim.de/f ileadmin/publication/
Schlicht10p2p.pdf
[17] P. Obermeier, A. Augustin, and R. Tolksdorf, “Towards swarm-based federated
web knowledgebases,” in Proc. Workshops der wissenschaftlichen Konferenz Kommunikation in
verteilten Systemen 2011, vol. 10.
[18] D. Fensel and F. van Harmelen. (2007). Unifying reasoning and search to web scale.
IEEE Internet Comput. [Online]. 11(2), pp. 94–96. Available: http://doi.ieeecomputersociety
.org/10.1109/MIC.2007.51
[19] D. Fensel, F. van Harmelen, B. Andersson, P. Brennan, H. Cunningham, E. D. Valle, F.
Fischer, Z. Huang, A. Kiryakov, T. K.-I. Lee, L. Schooler, V. Tresp, S. Wesner, M. Witbrock,
and N. Zhong, “Towards LarKC: A platform for web-scale reasoning,” in Proc. 2nd IEEE Int.
Conf. Semantic Computing (ICSC). IEEE Press, 2008, pp. 524–529.
[20] D. Peleg and U. Pincas, “The average hop count measure for virtual path layouts,” in
Proc. DISC: Int. Symp. Distributed Computing, LNCS, 2001.
[21] S. Tang, H. Wang, and P. V. Mieghem. (2008). The effect of peer selection with
hopcount or delay constraint on peer-to-peer networking, in Networking (Lecture
Notes in Computer Science Series, vol. 4982), A. Das, H. K. Pung, F. B.-S. Lee, and
L. W.-C. Wong, Eds. Springer-Verlag, pp. 358–365 [Online]. Available: http://dx.doi.
org/10.1007/978-3-540-79549-0_31
[22] A. Fronczak, P. Fronczak, and J. A. Hołyst. (2004, Nov.). Average path length in
random networks. Phys. Rev. E [Online]. 70(5), pp. 056110+. Available: http://dx.doi.
org/10.1103/PhysRevE.70.056110
[23] A.-L. Barabasi and R. Albert, “Emergence of scaling in random networks,” Science,
vol. 286, no. 5439, pp. 509–512, Oct. 1999.
[24] A. Harth and P. Buitelaar. (2009). Exploring semantic web data sets with VisiNav, in
Proc. 6th Annu. European Semantic Web Conf. (ESWC2009), Poster Session [Online]. Available:
http://sw.deri.org/2009/01/visinav/eswc-poster/visinav-poster.pdf
[25] G. Qi, J. Pan, and Q. Ji. (2007). Extending description logics with uncertainty
reasoning in possibilistic logic, in Proc. Symbolic and Quantitative Approaches to Reasoning
with Uncertainty, pp. 828–839 [Online]. Available: http://www.springerlink.com/index/
j5102m4034j04235.pdf
[26] S. Kotoulas, E. Oren, and F. Van Harmelen. (2010). Mind the data skew: Distributed
inferencing by speeddating in elastic regions, in Proc. 19th Int. Conf. World Wide Web
(WWW2010), ACM, pp. 531–540 [Online]. Available: http://portal.acm.org/citation.
cfm?id=1772745
[27] D. Battré, F. Heine, A. Höing, and O. Kao. (2006). On triple dissemination, forward-
chaining, and load balancing in DHT based RDF stores, in Proc. 4th Int. Workshop Databases,
Information Systems and Peer-to-Peer Computing (DBISP2P2006) (Lecture Notes in Computer
Science Series, vol. 4125), G. Moro, S. Bergamaschi, S. Joseph, J.-H. Morin, and A. M.
Ouksel, Eds. Springer-Verlag, pp. 343–354 [Online]. Available: http://dx.doi.org/10.1007/
978-3-540-71661-7_33
[28] Q. Fang, Y. Zhao, G. Yang, and W. Zheng, “Scalable distributed ontology reasoning
using DHT-based partitioning,” in Proc. 7th Int. Semantic Web Conf. (ISWC2008), 2008,
pp. 91–105.
[29] Z. Kaoudi, I. Miliaraki, and M. Koubarakis. (2010). RDFS reasoning and query
answering on top of DHTs, in Proc. 7th Int. Semantic Web Conf. (ISWC2008). Spring-
er-Verlag, pp. 499–516 [Online]. Available: http://www.springerlink.com/index/
V6440538394785H6.pdf
[30] E. Oren, S. Kotoulas, G. Anadiotis, R. Siebes, A. Ten Teije, and F. Van Harmel-
en. (2009). Marvin: Distributed reasoning over large-scale Semantic Web data. J. Web
Semantics [Online]. 7(4), pp. 305–316. Available: http://linkinghub.elsevier.com/
retrieve/pii/S1570826809000444
[31] J. Urbani, S. Kotoulas, E. Oren, and F. van Harmelen. (2009). Scalable distrib-
uted reasoning using MapReduce, in Proc. 8th Int. Semantic Web Conf. (ISWC), Spring-
er-Verlag, pp. 634–649 [Online]. Available: http://www.springerlink.com/index/
M44432748XT110PJ.pdf
[32] J. Urbani, S. Kotoulas, J. Maassen, F. Van Harmelen, and H. Bal. (2010). OWL
reasoning with WebPIE: Calculating the closure of 100 billion triples, in Proc. 9th Int.
Semantic Web Conf. (ISWC). Springer-Verlag, pp. 213–227 [Online]. Available: http://
www.springerlink.com/index/2581664J64961667.pdf
[33] H. Horst. (2005). Combining RDF and part of OWL with rules: Semantics, decid-
ability, complexity, in Proc. 4th Int. Semantic Web Conf. (ISWC), pp. 668–684 [Online].
Available: http://www.springerlink.com/index/366474250nl35412.pdf
[34] J. Weaver and J. Hendler. (2009). Parallel materialization of the f inite rdfs clo-
sure for hundreds of millions of triples, in Proc. 8th Int. Semantic Web Conf. (ISWC).
Springer-Verlag, pp. 682–697 [Online]. Available: http://www.springerlink.com/
index/77X71125037K6583.pdf
[35] A. Hogan, J. Pan, and A. Polleres. (2010). SAOR: Template rule optimisations for
distributed reasoning over 1 billion linked data triples, in Proc. 9th Int. Semantic Web Conf.
(ISWC), vol. 1380, pp. 337–353 [Online]. Available: http://www.springerlink.com/
index/M6144754NM475404.pdf

