
These Rows Are Made for Sorting
and That’s Just What We’ll Do

Laurens Kuiper
CWI, Amsterdam, Netherlands

laurens.kuiper@cwi.nl

Hannes Mühleisen
CWI, Amsterdam, Netherlands

hannes.muehleisen@cwi.nl

Abstract—Sorting is one of the most well-studied problems in
computer science and a vital operation for relational database
systems. Despite this, little research has been published on
implementing an efficient relational sorting operator. In this
work, we aim to fill this gap. We use micro-benchmarks to explore
how to sort relational data efficiently for analytical database
systems, taking into account different query execution engines as
well as row and columnar data formats. We show that, regardless
of architectural differences between query engines, sorting rows
is almost always more efficient than sorting columnar data, even
if this requires converting the data from columns to rows and
back. Sorting rows efficiently is challenging for systems with an
interpreted execution engine, as interpreting rows at runtime
causes overhead. We show that this overhead can be overcome
with several existing techniques. Based on our findings, we
implement a highly optimized row-based sorting approach in the
DuckDB open-source in-process analytical database management
system, which has a vectorized interpreted query engine. We
compare DuckDB with four analytical database systems and
find that DuckDB’s sort implementation outperforms query
engines that sort using a columnar data format, and matches
or outperforms compiled query engines that sort using a row
data format.

Index Terms—relational databases, database query processing,
sorting

I. INTRODUCTION

Sorting is one of the most well-studied problems in com-
puter science. Research on efficient sorting algorithms focuses
on crucial issues such as cache-efficiency [1], reducing branch
mispredictions [2], parallelism [3], and worst-case patterns [4],
but is mostly limited to sorting large arrays of integers.
Database systems research focuses on many of the same
issues [5]–[7], and database systems have some of the most
practical use-cases of sorting: The ORDER BY and WINDOW
operators explicitly invoke sorting, but other operations such
as building an index, merge joins, and inequality joins [8] may
implicitly rely on sorting. Therefore, it is crucial to have an
efficient sort implementation to provide fast query response
times, especially for analytical (OLAP) data management
systems. However, sorting relational data is more involved than
sorting an array of integers, and very little research has gone
into sorting relational data efficiently, especially compared to
the amount of research on other operators, such as joins [9].

Although relational sorting implementations can reap the
benefits from the sorting algorithms that research has pro-
duced [2]–[4], merely using such an algorithm will not make
a relational sorting implementation efficient by default, as

Fig. 1. Converting vectors to rows, sorting them, and converting them back
to vectors. The columns that appear in the order clause are colored, and the
other selected columns are in gray.

we will demonstrate in this paper. This is because the cost
of sorting is dominated by two operations: Comparing and
moving values [10]. Comparing and moving relational data is
not as straightforward as comparing and moving integers and
is more costly. These two operations must be implemented
as efficiently as possible. The comparison function that arises
from the ORDER BY clause can be arbitrarily complex and
contain any of the types that the system supports.

A system’s query execution engine affects how these oper-
ations can be implemented, as well as the efficiency of these
implementations. The engines of most modern OLAP systems
are based on either vectorization, pioneered by VectorWise [5],
or data-centric code-generation, pioneered by HyPer [11]. The
strengths and weaknesses of these two processing paradigms
have been researched in-depth [12], [13], but not in the context
of sorting. This work investigates how to sort relational data
efficiently under both paradigms. We find that sorting rows is
almost always more efficient than sorting columnar data, even
if this requires converting from a columnar to a row format
and back, as illustrated for a vectorized engine in Figure 1.

To compare the differences between sorting a columnar and
row data format, as well as the differences between sorting in
vectorized and compiled query engines, we could compare the
end-to-end runtime of database systems that implement these
approaches. However, with full-fledged systems, it is challeng-
ing to create an apples-to-apples comparison, as these systems
differ in many aspects unrelated to sorting. Therefore, to
isolate the fundamental differences between these approaches,

mailto:laurens.kuiper@cwi.nl
mailto:hannes.muehleisen@cwi.nl


we implement a relational sorting micro-benchmark. Our
experimental results show that compiled query engines can
efficiently sort row data, while vectorized interpreted engines
are hindered by interpretation and function call overhead. We
demonstrate that this overhead can be overcome by imple-
menting several existing techniques.

Finally, we implement a row-based sort that includes these
techniques within DuckDB, our in-process OLAP database
management system. DuckDB provides SQL, columnar stor-
age and uses a vectorized interpreted execution engine. We
compare our implementation with four high-performance an-
alytical database systems: ClickHouse [14], MonetDB [15],
HyPer [11], and Umbra [16]. The results of this comparison
show that DuckDB’s interpreted row-based sort implementa-
tion outperforms ClickHouse’s and MonetDB’s sort implemen-
tations, which use a columnar data format, and matches or
outperforms HyPer’s and Umbra’s compiled row-based sort
implementations.

The remainder of this paper is organized as follows. In Sec-
tion II, we discuss the challenges of implementing relational
sorting. After describing our methodology in Section III, we
evaluate several approaches to sorting relational data in row
and columnar format with micro-benchmarks in Section IV.
Then, in Section V, we discuss how the query execution
engine affects sorting performance. Section VI discusses and
evaluates techniques for sorting in vectorized interpreted query
engines. In Section VII, we describe DuckDB’s sort imple-
mentation and evaluate it in an end-to-end benchmark. We
summarize and draw our conclusions in Section VIII, and
discuss future work in Section IX.

II. SORTING RELATIONAL DATA

Database systems use sorting for many purposes [10].
Sorting can be invoked explicitly by specifying a sort order
at the end of a query or a window specification, but also
implicitly for many purposes such as join algorithms [8],
improving run-length encoding compression [17], and zone
maps [18]. Because it is so widely useful, any database system
needs an efficient sorting implementation, especially OLAP
systems that aim to have low query response times. Sorting
relational data efficiently, however, is not as straightforward
as sorting an array of integers.

Whether sorting is invoked explicitly in an ORDER BY
clause or implicitly by other means, a relational sorting
implementation must be able to sort all selected data by one
or more predicates. Take the following query, for example:
SELECT * FROM customer
ORDER BY c_birth_country DESC NULLS LAST,

c_birth_year ASC NULLS FIRST;

This query specifies which columns to return and how they
should be sorted, i.e., it describes how rows should be
compared to produce the ordered query result. All columns
from the customer table should be returned, sorted by the
column c_birth_country in descending order, with NULL
values coming last, and where rows have the same value in
that column, they should be sorted by c_birth_year in

ascending order with NULL values coming first. We will refer
to the columns that appear in the ORDER BY clause as key
columns, and all other selected columns as payload columns.

As we can see for the example query, describing how rows
should be compared is already complex, even though we
specify only two key columns. In contrast, comparing integers
is done using simply the ‘<’-operator. Naively comparing rows
may result in a complex comparator with many branches.
Because the comparator is so frequently used during sorting, it
should be implemented as efficiently as possible. For example,
eliminating branches from the comparison function speeds up
quicksort significantly [2].

How a relational sort implementation physically represents
data in memory also affects comparison efficiency. If the keys
belonging to a single row are not stored consecutively in mem-
ory, which is the case for a columnar data format, comparing
tuples causes random access for each compared value, which
may cause cache misses. Improving cache locality speeds up
many sorting algorithms significantly [1].

Besides determining the order in which to return the tuples
by comparing and sorting them, the data must also be phys-
ically re-ordered. For an array of integers, this is trivial: We
sort the array with an efficient sorting algorithm, which results
in the data being in the correct order. For relational data, it
is not as obvious because there are many ways to represent
tuples. Sorting is inherently a row-wise operation, but systems
with a vectorized engine use a columnar data format. For
such systems, it might be beneficial to convert the data to
a row format, also called the N-ary Storage Model (NSM),
and then convert it back to a columnar format, also called
the Decomposition Storage Model (DSM), after completing
the sort. Vectorized engines already do this for hash tables in
joins and aggregations [19].

Additionally, we can deal with the key and payload columns
separately: We can retrieve the payload in the correct order
after sorting the key columns. The question is then whether
it is efficient to convert either, neither, or both to NSM.
This is essentially a trade-off between cache locality and
data movement. Converting from DSM to NSM results in
a better memory access pattern when retrieving the payload
in the correct order because values that belong together are
close together in memory. This conversion, however, requires
moving all the data from the columnar format to the row
format. For the payload columns, the random access that is
incurred when retrieving tuples in the correct order can be
improved [20]. While payload handling is an essential part of
relational sorting, it is outside the scope of this paper. In this
work, we focus on sorting key columns.

Without benchmarking different sorting implementations, it
is unclear what the most efficient approach will be for a given
system. Differences in execution engine, hardware character-
istics like CPU cache size, and functionality requirements all
affect how to approach relational sorting. However, imple-
menting a relational operator such as the sort operator in a
database system is cumbersome, let alone implementing multi-
ple variations to determine the best-performing one. Therefore,



we use micro-benchmarks to evaluate several approaches for
sorting relational data to determine their effectiveness.

III. METHODOLOGY

To isolate the fundamental properties of sorting data in row
and columnar format, as well as the fundamental properties
of sorting in compiled and vectorized interpreted query ex-
ecution engines, we implement micro-benchmarks. By using
micro-benchmarks, we do not measure the time it takes to
parse and optimize queries and the overhead of result set
serialization [21], which may differ across database systems.
We have implemented several approaches to sorting relational
data using in C++. All of the approaches use std::sort,
an introspective sort [22] implementation. The std::sort
algorithm is not the state-of-the-art, as it can be improved in
various ways [2], [4]. This is not a problem, as we wish to
measure the effect of different data formats, tuple comparison
methods, and execution engine. We can directly compare this
as long as we use the same sorting algorithm.

A. Workload

The data for our micro-benchmarks consists of columns
of unsigned 32-bit integers. These are generated by sampling
from three distributions1:

Random Random uniform

Unique128 Random uniform with 128 unique values

PowerLaw Power-law with 128 unique values and a dis-
tribution power of 5

We vary the number of key columns from 1 to 4, as well as
the number of rows from 210 to 224.

We choose these three data distributions because we want
to know how the sorting approaches perform on different data
distributions with varying degrees of skewness. The Random
data distribution has virtually no duplicate values in each col-
umn. The Unique128 distribution has many duplicates in each
column, with each unique value occurring at approximately the
same rate. The PowerLaw distribution has the same number of
unique values as the Unique128 distribution, but the groups of
duplicates all have different sizes, and the group size is skewed
by a power-law distribution. Having duplicate values in the key
columns leads to ties when comparing values during sorting,
which requires the comparison function to compare the next
key column as well.

This is an oversimplification of real-world relational data,
which can have many different data distributions and types.
It is however, already more complex than sorting a single
array of integers, as we will consider multiple key columns,
the existence of a payload, row and columnar data formats,
and different execution engines. As we will demonstrate in
the following, memory access patterns, branch mispredictions,
and interpretation overhead are the main differentiating factors
in the performance of sorting implementations. The memory
access patterns of sorting a row and columnar data format that

1The source code for our micro-benchmarks can be found at https://github.
com/lnkuiper/experiments/sorting simulation

we measure in our micro-benchmark are the same regardless
of data type. The same holds for branch mispredictions and
interpretation overhead. Although we purposely keep our
micro-benchmarks simple, we include experiments with other
data types in our end-to-end benchmarks in Section VII.

B. Experimental Setup

To measure the runtime of our micro-benchmarks, we
use the m5d.8xlarge AWS EC2 instance unless noted
otherwise. This instance has an Intel Xeon Platinum 8259CL
CPU with 16 cores (32 threads), 128GB of RAM, and NVMe
storage. We use Ubuntu 20 as OS and compile our code with
Clang 12. We repeat each experiment five times and report
only the median runtime.

We measure CPU performance counters to further analyze
and understand the properties of different approaches. These
counters are obtained using Xcode command-line tools on
a 2020 MacBook Pro with an M1 ARM CPU, 16GB of
RAM, and NVMe storage. On this machine, we compile our
code with AppleClang 13. We use this machine because we
cannot measure performance counters on the m5d.8xlarge
instance type due to restrictions of the virtual machine. Note
that this machine has a different CPU architecture and a larger
L1 cache size than the AWS instance. We run the performance
counter measurements just once. Detailed specifications of all
hardware used in our experiments can be found in Table I.

TABLE I
SPECIFICATIONS OF HARDWARE USED IN EXPERIMENTS.

m5d.8xlarge m6gd.8xlarge MacBook

CPU Brand Intel AWS Apple
CPU Model 8259CL Graviton2 M1
Architecture x86 ARM ARM
Cores/Threads 16/32 32/32 8/8
Clock Rate 2.5-3.5 GHz 2.5 GHz 3.2 GHz
L1 Cache 32 KB 64 KB 128 KB

IV. DSM VS. NSM

In this section, we experimentally evaluate the efficiency
and performance characteristics of sorting relational data in
columnar and row format. We sort only the key columns
because we can retrieve the payload in the correct order after
sorting the keys to create a fully sorted run. Note that to
collect the payload, we need some way of tracking which keys
correspond to which payload, e.g., using a pointer or a row ID.
Furthermore, we assume that all input has been materialized,
i.e., the sort operator has collected all input data already in a
row or columnar format, such that we can further isolate raw
sorting performance.

There are two obvious ways of comparing tuples of rela-
tional data when there are multiple key columns:

1) Iterate through the key columns with each comparison.
Compare values until we find one that is not equal or
until we have iterated through all columns in the order
clause.

https://github.com/lnkuiper/experiments/sorting_simulation
https://github.com/lnkuiper/experiments/sorting_simulation


2) Sort everything by the first key column, then identify the
tuples that have an equal value in this column, and sort
these by the second key column. Repeat until all key
columns are sorted.

We apply these approaches to both the columnar and row data
formats. We will refer to (1) as the tuple-at-a-time approach,
and to (2) as the subsort approach.

A. Sorting Columnar Data

With a columnar data format, comparing tuples requires
accessing their values in each column. This necessitates sorting
indices rather than sorting the data directly because we need
to use the indices to access the data in the columns. After
sorting, the sorted indices are used to retrieve the payload in
the correct order. An implementation of the tuple-at-a-time
approach for the columnar format data using std::sort in
C++ could look like the following:
// Compare two tuples using their row id
bool compare(l_id, r_id, cols) {

size_t i = 0;
for (; i < cols.size() - 1; i++) {
if (cols[i][l_id] != cols[i][r_id])
break;

}
return cols[i][l_id] < cols[i][r_id];

}
// Sort N row indices ’idxs’ by the values of the

keys in ’cols’ using our ’compare’ function
std::sort(idxs, idxs + N, [&] (l_id, r_id) -> bool {
return compare(l_id, r_id, cols);

});

Tuples are represented by their indices ‘idxs’, and compared
using their respective values in ‘cols’. The subsort imple-
mentation works similarly: It also sorts by indices but has
a less complex comparison function that only compares one
column. Additionally, the subsort approach has to identify tied
tuples after each pass and recurse until there are no more ties,
or until all columns are done.

The tuple-at-a-time sorting approach for the columnar data
format has three major deficiencies: 1) Comparing two tuples
causes multiple random accesses with each comparison. If the
tuples have the same value in the first key column, we need to
compare their value in the second key column, and so forth.
The more duplicate values there are, the more random access
we have. Therefore, this approach suffers from data distribu-
tions with many duplicates, and skewed data distributions. 2)
The comparison function has branches, namely, whether to
compare the next key column or not. This may be difficult to
predict, again depending on the distribution: If there are no
duplicates, the branch predictor will correctly predict never to
compare the next column. 3) It sorts indices rather than the
data in the key columns itself, i.e., the data in the key columns
never actually moves. Sorting algorithms move similar values
next to each other in memory, which improves cache locality.
However, by not moving the actual data, the tuple-at-a-time
approach does not benefit from this.

The subsort approach improves on this by only causing
random access in one column at a time, mitigating deficiency
(1), and comparing a single column at a time and therefore

having no branches in the comparison function, eliminating
deficiency (2). Furthermore, sorting one column at a time
reduces the cache pressure because a single memory region
is accessed at a time, which mitigates deficiency (3) slightly.

We measure performance counters of both methods in our
micro-benchmark and show the results in Table II. As ex-
pected, the tuple-at-a-time approach incurs more cache misses
and branch mispredictions than the subsort approach on all
data distributions, except for the Random distribution. In this
data distribution, there are almost no duplicates. Therefore,
the second column rarely has to be randomly accessed. For
the same reason, the number of branch mispredictions on this
data distribution is also similar between the two approaches
because the branch predictor can almost perfectly predict to
never compare the value in the second column for the tuple-
at-a-time approach. For the other two data distributions, the
subsort approach incurs significantly fewer cache misses and
branch mispredictions.

TABLE II
L1 CACHE MISSES AND BRANCH MISPREDICTIONS (BOTH IN TRILLIONS,

LOWER IS BETTER) OF SORTING 224 ROWS OF 3 KEY COLUMNS IN
COLUMNAR (C) DATA FORMAT, WITH THE tuple-at-a-time (T) AND subsort

(S) APPROACHES.

Distribution Cache Misses Branch Misses

C/T C/S C/T C/S

Random 2.74 2.87 1.54 1.48
Unique128 11.18 6.13 3.56 1.54
PowerLaw 11.37 4.44 2.45 0.97

CPU performance is affected negatively by cache misses
and branch mispredictions, which should translate into a
worse sorting performance. We measure the runtime of both
approaches using our micro-benchmark and show the relative
runtime of subsort compared to the tuple-at-a-time approach
in Figure 2. A relative runtime of 2.00 means that the subsort
approach was twice as fast as the tuple-at-a-time approach,
i.e., it finished sorting in half the time. When there is only
one key column, the approaches are virtually equal. For the
Random data distribution, the relative runtime is close to 1 for
all inputs, i.e., the approaches perform similarly. This is in line
with our expectation because the tuple-at-a-time approach does
not suffer as much from its deficiencies for this distribution.

1 2 3 4
Key columns

21
0
21

2
21

4
21

6
21

8
22

0
22

2
22

4
R
ow

s

1.12 1.04 1.05 1.06

1.15 1.04 1.06 1.05

1.13 1.06 1.09 1.03

1.12 1.05 1.09 1.06

1.13 1.05 1.05 1.05

1.13 1.06 1.04 1.04

1.12 1.03 1.03 1.03

1.12 0.99 0.96 1.02
Random

1 2 3 4
Key columns

1.14 1.14 1.10 1.09

1.12 1.19 1.21 1.13

1.13 1.17 1.13 1.12

1.11 1.20 1.27 1.25

1.10 1.21 1.39 1.36

1.12 1.26 1.49 1.51

1.09 1.45 1.68 1.74

1.02 1.54 1.77 1.82
Unique128

1 2 3 4
Key columns

1.15 1.20 1.17 1.09

1.12 1.16 1.20 1.10

1.12 1.17 1.29 1.23

1.14 1.21 1.35 1.35

1.11 1.22 1.36 1.41

1.12 1.25 1.49 1.68

1.09 1.43 1.73 1.95

1.06 1.55 1.80 1.93
PowerLaw

Fig. 2. Relative runtime (higher is better) of the subsort approach compared
to the tuple-at-a-time approach on a columnar data format.



For the Unique128 and PowerLaw distributions, the subsort
approach is better the more rows and the more key columns
there are. For these distributions, the tuple-at-a-time approach
performs relatively worse than the subsort approach because
the columns no longer fit in the CPU’s cache, and the increased
cache pressure and branch mispredictions of the tuple-at-a-
time approach hurt its performance. From these results, we
conclude that the subsort approach is the best approach for
data in columnar format.

B. Sorting Row Data

Unlike the columnar data format, we do not have to use
row indices while sorting row format data. We can directly
address a row rather than address it by its row index because
all values that we compare are co-located. The row indices (or
pointers) are still needed to retrieve the payload in the correct
order after sorting. We can pack these within the row, which,
for example, can be achieved with a struct in C++:
struct OrderKey {
// Key columns
uint32_t col1;
uint32_t col2;
// Index (or pointer) to the payload
size_t idx;

};

The row format data is sorted by calling, e.g., std::sort on
an array of the OrderKey structs. The comparison function
used to sort is then defined as a comparison function between
the key column values in these structs.

Like the columnar data format, we sort the row data format
with the tuple-at-a-time approach. We can sort rows with the
subsort approach as well, although, at first glance, it is less
intuitive to do this with rows. Like before, subsort simplifies
the comparison function while sorting, as it does not need
branches. The implementation of subsort for rows is the same
as for columnar data: We sort, identify which tuples are tied,
sort the tied tuples by the next column, and so forth.

We measure performance counters of both methods in
our micro-benchmark and show the results in Table III. By
comparing this with Table II, it is clear that sorting the row
data format incurs fewer cache misses than sorting columnar
format data by an order of magnitude. The number of branch
misses is similar. Unsurprisingly, the subsort approach incurs
fewer branch mispredictions than the tuple-at-a-time approach
on every data distribution because there are no branches in

TABLE III
L1 CACHE MISSES AND BRANCH MISPREDICTIONS (BOTH IN TRILLIONS,
LOWER IS BETTER) OF SORTING 1024 ROWS OF 3 KEY COLUMNS IN ROW

(R) DATA FORMAT, WITH THE tuple-at-a-time (T), AND subsort (S)
APPROACHES.

Distribution Cache Misses Branch Misses

R/T R/S R/T R/S

Random 0.41 0.40 0.93 0.90
Unique128 0.49 0.67 1.48 0.91
PowerLaw 0.39 0.50 0.89 0.51

21
0
21

2
21

4
21

6
21

8
22

0
22

2
22

4
R
ow

s

1.15 1.09 1.12 1.06

1.15 1.09 1.11 1.07

1.17 1.10 1.15 1.11

1.20 1.13 1.15 1.11

1.31 1.22 1.27 1.21

1.40 1.28 1.36 1.27

1.66 1.50 1.55 1.51

2.15 2.02 2.09 1.88
Random

1.14 1.10 1.13 1.17

1.15 1.08 1.13 1.20

1.17 1.10 1.15 1.23

1.19 1.13 1.15 1.23

1.30 1.22 1.26 1.34

1.40 1.30 1.34 1.42

1.66 1.52 1.51 1.68

2.14 2.04 2.05 2.09

Row tuple-at-a-time vs. Columnar subsort
Unique128

1.11 0.97 1.07 1.03

1.15 0.97 1.05 1.05

1.16 1.01 1.11 1.10

1.20 1.04 1.09 1.06

1.26 1.14 1.13 1.10

1.35 1.21 1.25 1.25

1.56 1.48 1.50 1.56

2.08 2.16 2.07 2.01
PowerLaw

1 2 3 4
Key columns

21
0
21

2
21

4
21

6
21

8
22

0
22

2
22

4
R
ow

s

1.13 1.07 1.07 1.10

1.14 1.04 1.05 1.09

1.16 1.03 1.05 1.07

1.18 1.04 1.07 1.08

1.25 1.11 1.17 1.18

1.35 1.15 1.26 1.21

1.54 1.37 1.45 1.45

2.10 1.96 1.96 1.93
Random

1 2 3 4
Key columns

1.14 0.96 1.07 1.10

1.11 0.99 1.05 1.07

1.14 1.03 1.02 1.03

1.16 1.04 1.05 1.04

1.25 1.14 1.18 1.13

1.32 1.23 1.30 1.22

1.48 1.46 1.60 1.43

2.17 2.09 2.35 2.07

Row subsort vs. Columnar subsort
Unique128

1 2 3 4
Key columns

1.13 1.04 1.05 1.08

1.15 1.02 1.03 1.05

1.15 1.02 1.06 1.06

1.18 1.01 1.08 1.04

1.22 1.06 1.17 1.13

1.32 1.13 1.24 1.18

1.47 1.32 1.48 1.34

2.15 1.85 2.15 1.86
PowerLaw

Fig. 3. Relative runtime (higher is better) of the tuple-at-a-time and subsort
approaches on row format data compared to the subsort approach on a
columnar data format.

the comparison function. The subsort approach incurs slightly
more cache misses than tuple-at-a-time. This is caused by
scanning the data for tied tuples after each sort.

We measure the runtime of the row format approaches and
show the results in Figure 3. We use the best columnar sorting
approach, the subsort approach, as a baseline to compare with
the row sorting approaches. From the results, it is clear that
sorting the row data format is more efficient than sorting the
columnar data format, as the relative runtime of the row sorting
approaches is greater than 1 for almost all inputs. For smaller
input sizes, sorting rows has a similar performance because
the data fits in the CPU’s cache. Therefore, the random access
incurred by the columnar approach does not affect the runtime
by much. For larger input sizes, the data does not fit in the
CPU’s cache, and the improved cache locality of the row data
format results in a better performance.

In summary, NSM tuple representation performs much
better when sorting relational data than DSM. This is true
regardless of data distribution, and the performance gain is
especially noticeable when sorting a large number of tuples.
It remains to be seen whether converting to rows, sorting, then
converting back to columns is worth it in a system that uses the
DSM tuple representation in its query execution engine. This
will be evaluated in end-to-end benchmarks in Section VII.

V. QUERY ENGINES AND SORTING

The Volcano [23] iterator model for pipelined processing
leads to tuple-at-a-time query execution, which causes high in-
terpretation overhead, making it unsuitable for OLAP systems
that require low query response time. Vectorized query execu-
tion [5] amortizes this overhead with vector-at-a-time query
execution. Compiled query execution [11] generates code



specialized for the types present in the query, which eliminates
interpretation overhead, and compiles the generated code to
efficient machine code using just-in-time (JIT) compilation.
These two fundamentally different models have a similar
performance in OLAP workloads [12]. Although the concepts
of vectorization and compilation are not orthogonal [13], most
systems adopt one of the two models.

In a query execution pipeline, sorting is a pipeline breaker:
The sort operator must consume all input data before being
able to output any data since the very last input row may be the
first row that has to be output. This necessitates materializing
the input data. To a certain extent, operators that materialize
their input have more ‘freedom’ than streaming operators,
as they can internally represent the data in any way they
see fit, as long as they output their data in a way that is
compliant with the default of the execution engine. Although
converting the data format from and to a different format
does not come without a cost, it can significantly speed up
query processing [19], [24] because it results in better memory
access patterns.

Both vectorized and compiling query engines have to choose
how to materialize input data for the sort operator. As we
saw in the previous section, the data format directly affects
sorting efficiency because it affects the cost of comparing and
moving data. However, within a database system, sorting is
used for many purposes. How other operators use sorted data
internally, such as merge- and inequality joins [8] should also
be taken into account. In this section, we discuss the effect
that the fundamentally different query execution engines have
on sorting.

A. Compiled Sorting

From the previous section, it is clear that sorting a row data
format is significantly more efficient than sorting a columnar
data format. This is especially true when many key columns
and tuples are sorted. Compiling query engines use tuple-
at-a-time processing on generated data types [12], such as
the OrderKey struct that we used in our micro-benchmarks.
An array of such structs is essentially relational data in row
data format. This format allows compiling query engines to
sort using an efficient random access iterator, such as the
C++ iterator interface that is used for std::sort and many
other efficient sort implementations [2], [4]. Furthermore,
compiling engines can also compile the comparison function,
which practically removes all interpretation and function call
overhead.

In short, compiling query engines can use highly efficient
compiled operations to compare and move values, which are
the two main costs of sorting. Compiling query engines can
adopt the tuple-at-a-time or subsort approaches and achieve a
very efficient sorting performance, matching the best perfor-
mance we have seen in our micro-benchmarks so far.

B. Vectorized (Interpreted) Sorting

Vectorization amortizes the interpretation overhead of tuple-
at-a-time processing. This approach yields excellent perfor-

mance in many cases because many relational operations
are vectorizable. The same is true for sorting: In a system
with a vectorized interpreted engine, the subsort approach
can be used to interpret the type and ASC/DESC, NULLS
FIRST/LAST order only once per key column. However, as
we have seen, the columnar subsort approach is much less
efficient than sorting row data for large input sizes.

Furthermore, some use cases in database systems cannot
use the subsort approach. Examples of this are merge sort,
merge joins, and inequality joins [8]. In these use cases, runs
of sorted data are accessed with a random access iterator, and
tuples are compared. For example, in a 2-way merge sort,
we have a left and a right sorted run, both of which have a
random access iterator. When merging the runs, the decision
of incrementing either the left or right iterator relies on a
full tuple comparison, i.e., comparing all key columns. Fully
comparing tuples in an interpreted engine requires interpreting
a type and a sort order for each key column or performing a
function callback for each key column in the tuple comparison.
The former creates interpretation overhead, and the latter
creates function call overhead in the comparison function. This
overhead is costly [5] and decreases CPU efficiency, especially
when called for every tuple, which is necessary for comparing
tuples of sorted data.

We illustrate this cost by comparing two tuple-at-a-time
approaches to sorting the row data format in our micro-
benchmark. The approaches are identical except that one has
a statically compiled comparison function, while the other
uses a dynamic function call to compare values, incurring
function call overhead on every comparison. We show the
results of this experiment in Figure 4. As expected, a dynamic
function call is always slower than a statically compiled
comparison. This effect is roughly similar across all three
data distributions. We emphasize that this experiment is an
oversimplification of what would be implemented in a database
system with a vectorized interpreted engine. However, the
experiment accurately illustrates the cost the overhead that
interpreted systems deal with.

From our experiments in the previous section, it is evident
that sorting data in a row format is much more efficient than
sorting data in a columnar format. In this section, it has
become clear that vectorized interpreted execution engines

Fig. 4. Relative runtime (higher is better) of a tuple-at-a-time approach with
a dynamic comparator compared to a static comparator on data in row format.



suffer from overheads that hurt the efficiency of sorting.
The columnar subsort approach can be used to mitigate this.
However, this approach suffers from cache inefficiency for
large input sizes, as well as interpretation and function call
overhead when tuples need to be compared fully, which is
often the case when sorted data is used in other relational
operations. Therefore, vectorized engines need to explore other
solutions to overcome this overhead.

VI. SORTING ROWS IN AN INTERPRETED QUERY
EXECUTION ENGINE

In this section, we discuss and evaluate techniques that
can be used to improve the performance of sorting row
format data in interpreted query execution engines. These
existing techniques have been proposed in the literature, but
not together and in the context of sorting relational data in an
interpreted query engine, to the best of our knowledge.

A. Normalized Keys

Key normalization [25] is an encoding technique that
produces a single order-preserving string from a se-
quence of values, which dates back to System R [26].
The technique is illustrated in Figure 5 for the example
query in Section II, which orders the customer table
by c_birth_country DESC and c_birth_year ASC.
The first column, c_birth_country, is of type VARCHAR.
The shorter string ‘GERMANY’ is padded with ‘0’ such that it
has the same length as the longer string ‘NETHERLANDS’ to
ensure that the size of each normalized key is the same. Then,
we flip the bits to get a descending order for this column. The
second column, c_birth_year, is of type INTEGER. On a
big-endian machine, the most significant byte comes last. To
create an order-preserving encoding, we swap the bytes so that
the most significant byte comes first. Then, we flip the sign bit
such that negative integers appear before positive integers in
the ascending sort order. The resulting normalized keys yield
the correct order for the example query if we compare them
if they are strings.

String collations are handled by evaluating the collation
before encoding the string prefix. NULL values are handled by
prefixing each value with an additional byte, denoting whether

c_birth_country c_birth_year

NETHERLANDS 1992
GERMANY 1924

c_birth_country c_birth_year

78 69 84 72 69 82 76 65 78 68 83 0 200 7 0 0
71 69 82 77 65 78 89 0 132 7 0 0

Normalized Key

177 186 171 183 186 173 179 190 177 187 172 255 128 0 7 200
184 186 173 178 190 177 166 255 255 255 255 255 128 0 7 132

(a)

(b)

(c)

Fig. 5. Key normalization. The original data in (a) is represented byte-by-byte
as (b) in-memory on a little-endian machine. The data is encoded as (c) for
c_birth_country DESC and c_birth_year ASC.

or not the value is NULL. This byte is then flipped depending
on whether we are sorting by NULLS FIRST / LAST. If we
have min / max statistics and know that the first bit of the
column we are encoding is never set, it is possible to use a
single bit instead.

Although it is not strictly necessary to use fixed-size keys,
having fixed-size keys allows keys to swap places during
sorting, which improves cache efficiency, as we have seen in
Section IV. We cannot generate the OrderKey struct without
JIT compilation. Therefore we have to use memcpy to move
the keys. If variable-size columns like strings appear in the
order clause, we can only encode a prefix. The rest of the
string only needs to be compared when prefixes are equal.
The resulting fixed-size keys can be compared using memcmp
rather than a complex comparison function.

The conversion from columnar data to normalized keys
does not come without cost. However, this conversion can be
done efficiently, in a vectorized way, amortizing interpretation
overhead. The result is a key that can be compared generically
without any interpretation or function call overhead.

B. The mem* Functions

Compiling query engines can rely on generating a data
type that holds the key column values for arbitrary queries.
This allows them to compile a comparison function and use
the ‘=’-operator to move data. This yields highly efficient
machine code for comparing and moving tuples. Vectorized
interpreted engines cannot do this and must deal dynamically
with arbitrary ORDER BY clauses at runtime. To be able to
compare and move rows of any given size, the memcpy and
memcmp functions can be used.

The more information the compiler has at compile time, the
more optimizations it can perform. Vectorized query engines
have less information at compile-time but can benefit from pre-
compiling specific procedures nonetheless. The memcpy and
memcmp functions, which respectively move and compare a
number of bytes, may benefit from knowing the exact number
of bytes statically at compile-time rather than dynamically at
runtime. We pre-compile many versions of these functions
with different fixed sizes. The correct size is then chosen at
runtime, like so:
// Static memcpy
void s_memcpy(void *dest, void *src, size_t size) {
switch (size) {
case 1:
return memcpy(dest, src, 1);

case 2:
return memcpy(dest, src, 2);

// And so forth
default:
memcpy(dest, src, size);

}
}

Performing the switch-statement to choose the correct size
at runtime causes a slight overhead. This overhead is negligi-
ble for sorting because the size parameter stays constant
throughout, and therefore the CPU’s branch predictor can
predict perfectly.



We investigate the performance of calling these functions
dynamically and choosing a static pre-compiled version at run-
time. For memcpy, we sequentially copy 1.000.000 elements
from a source array to a destination array, i.e., we copy the
first element from the source array to the first element in the
destination array, then the second, and so forth. We then take
the average execution time of copying an element. We repeat
this for elements of sizes 0 to 64.

Similarly, for memcmp, we generate two arrays, both con-
taining 1.000.000 elements. Each element has an equal prefix,
the length of which is randomly chosen between 0 and the
size of the element. Then, we sequentially compare the first
element of the arrays with each other, then the second, and so
forth. We again take the average execution time comparing an
element and repeat this for elements of sizes 0 to 64.

Copying and comparing regions of memory are highly
optimized procedures. The behavior of these procedures may
depend on CPU architecture. Therefore, we run this experi-
ment on the m6gd.8xlarge AWS EC2 instance, which has
ARM CPU architecture, as well as the instance that we have
used for all our experiments so far, m5d.8xlarge, which
has x86 CPU architecture. Detailed hardware specifications
are found in Table I.

The results of this experiment are shown in Figure 6. For
dynamic memcpy, we see a pattern that seems to be optimized
for various fixed sizes, i.e., we see the same execution time
for sizes 8 to 15 on both CPU architectures. For dynamic
memcmp, we see a cyclic behavior, i.e., execution time is faster
for sizes that are a multiple of 8 or 16.

The x86 CPU is slightly faster on average than the ARM
CPU for both mem* functions. The difference between the
static and dynamic version of memcmp is very low on this

0

1

2

3

4

5

6
memcpy x86

dynamic
static

memcpy ARM

0 8 16 24 32 40 48 56 64
0

5

10

15

20

25

memcmp x86

0 8 16 24 32 40 48 56 64

memcmp ARM

size

E
xe
cu
tio
n 
Ti
m
e 
[n
s]

Fig. 6. Execution time of static and dynamic versions of the memcpy and
memcmp functions averaged over 1.000.000 runs on x86 and ARM CPU
architecture.

CPU. The static version is faster than the dynamic version
when the size parameter is less than or equal to 16, by 5% on
average. In many cases, the pre-compiled version is slower.
The difference between the static and dynamic version of
memcpy is larger: The static version is significantly slower
when we copy more bytes.

On the ARM CPU, the static and dynamic versions of
memcmp differ more. When the size parameter is less than 16,
the static version is 25% faster on average than the dynamic
version. The most interesting result is memcpy on this CPU:
The static version is, on average, 55% faster. This average
increases to 92% when the size parameter is less than or equal
to 16 and up to 121% for sizes less than or equal to 8.

C. Radix Sort

Quicksort is one of the most efficient sorting algorithms
and the most commonly used one. Therefore, it is no surprise
that most database systems opt for a variant of this algorithm.
Quicksort, being a comparison-based sort, has a time com-
plexity of O(nlogn), where n is the number of rows to be
sorted. Radix sort, on the other hand, is a distribution-based
sort with a time complexity of O(nk), where k is the key
size. This is potentially much faster than quicksort when there
are many tuples, as k does not depend on the input size.
However, radix sort also has downsides. Radix sort may be
much slower for large key size k, especially when n is small.
Furthermore, radix sort uses twice as much memory because it
needs auxiliary memory of the same size as the input, whereas
quicksort sorts in place. Because normalized keys yield the
correct sort order when comparing byte-by-byte with memcmp,
the keys can also be sorted with a byte-by-byte radix sort.

In his survey on implementing sorting in database sys-
tems [10], Goetz Graefe remarks that while radix sort may
seem like a good option, it has a few shortcomings for database
systems: (1) if keys are long and the data contains duplicate
keys, many of the passes over the data are unproductive, (2)
radix sort is most effective if values are uniformly distributed,
(3) if input records are nearly sorted, and the keys have a
common prefix, the initial passes of radix sort are rather
ineffective, and (4) radix sort has worse cache efficiency than
comparison-based sorts.

We have implemented least significant digit (LSD) radix
sort and most significant digit (MSD) radix sort that recurses
to insertion sort for buckets with ≤ 24 tuples. We have added
an optimization to both radix sorts that avoids copying data
when all counted values belong to the same bucket, which
helps slightly with shortcomings (1) and (3). LSD radix sort
is selected when the key size is ≤ 4 bytes, and MSD radix
sort is selected otherwise. Radix sort moves data every time it
re-distributes, which is done using the pre-compiled memcpy
as described in the previous subsection.

For a more fair comparison, we compare our radix sort im-
plementation with pdqsort [4], rather than with std::sort.
pdqsort is a highly optimized comparison-based sort that
uses optimizations from BlockQuickSort [2] to reduce branch
mispredictions, along with recognizing worst-case patterns



1 2 3 4
Key columns

21
0
21

2
21

4
21

6
21

8
22

0
22

2
22

4
R
ow

s

2.23 1.19 1.08 1.13

2.59 0.90 0.83 0.87

2.80 2.04 2.00 2.00

2.67 1.78 1.70 1.72

2.61 1.51 1.45 1.44

2.78 1.11 1.04 0.99

1.54 1.15 1.07 1.04

1.43 1.22 1.15 1.11
Random

1 2 3 4
Key columns

1.53 1.01 0.98 0.97

1.11 0.81 0.76 0.81

0.91 1.31 1.23 1.29

0.83 1.58 1.40 1.39

0.79 1.50 1.27 1.23

0.77 1.11 1.28 1.18

0.61 0.86 1.35 1.16

0.63 0.88 1.57 1.16
Unique128

1 2 3 4
Key columns

1.20 0.68 0.67 0.69

0.95 0.91 0.89 0.91

0.80 1.01 1.02 1.02

0.77 0.93 1.09 1.03

0.70 0.98 1.39 1.15

0.68 1.03 1.38 1.02

0.52 0.74 1.20 0.99

0.52 0.74 1.24 1.09
PowerLaw

Fig. 7. Relative runtime (higher is better) of our radix sort implementation
compared to pdqsort on normalized keys.

that quicksort traditionally does not perform well on. We
compare sorting normalized keys with pdqsort and radix sort
in our micro-benchmark and show the results in Figure 7.
We compare these two to illustrate the differences between a
comparison-based sort and radix sort on relational data.

For the Random distribution, radix sort performs better than
pdqsort on almost every input and wins out by a considerable
margin when there is only one key column. This is no surprise,
as radix sort excels at uniform distributions with a high number
of unique values, especially when the number of keys is low.

For the Unique128 distribution, pdqsort is faster than radix
sort when sorting one key column. This distribution is sub-
optimal for radix sort, as the number of unique values is low.
pdqsort, on the other hand, performs well on this distribution:
One of the worst-case patterns that pdqsort optimizes for is
a low number of unique values. This effect becomes more
pronounced as the data size increases. However, when we add
more key columns, there are more unique tuples, as tuples
are now a combination of multiple keys, making pdqsort less
effective.

For the PowerLaw distribution, the results are similar to the
Unique128 distribution. However, the results are even more in
favor of pdqsort, as the skewed distribution generates many
more tuples that are exactly the same. This makes pdqsort’s
optimizations for worst-case patterns more effective.

We measure performance counters of both sorting ap-
proaches for a single input and show them in Figure 8. For
this input, the runtime of both algorithms is approximately the
same. As expected, radix sort has a worse cache performance
than pdqsort, but this difference is relatively small. We use 3
key columns; therefore, our radix sort implementation chooses
MSD radix sort, which has much better cache performance
than LSD radix sort. Radix sort performs better than pdqsort
when it comes to branch mispredictions. It incurs virtually no
branch mispredictions, as it is a mostly branchless algorithm.

VII. EVALUATION

In the previous section, we applied several existing tech-
niques to sorting relational data and evaluated them in micro-
benchmarks. Our results suggest that these techniques can
vastly improve the performance of relational sorting in systems
with an interpreted query execution engine. Based on these
findings, we have implemented an efficient relational sort
within our analytical database system, DuckDB, which has

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Execution time [s]

0.0

5.0

10.0

15.0

C
ac

he
 m

is
se

s 
× 
1e

9

pdqsort
radix sort

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Execution time [s]

0.0

2.0

4.0

6.0

8.0

10.0

12.0

B
ra
nc

h 
m
is
pr
ed

ic
tio

ns
 ×
 1
e9

Fig. 8. Cumulative L1 cache misses and branch mispredictions of sorting
224 rows with 3 key columns, PowerLaw distribution, with pdqsort and radix
sort.

a vectorized interpreted execution engine. In this section,
we first describe DuckDB’s sort implementation in detail.
Then, we describe the sort implementations of the four other
systems under benchmark. Finally, we evaluate and discuss
their performance on sorting integers / floats and a relational
sort benchmark based on the TPC-DS [27] data generator.

DuckDB’s fully parallel sorting pipeline [28] is shown in
Figure 9. DuckDB uses morsel-driven parallelism [6]; there-
fore, each thread collects roughly the same amount of data in
parallel. Key and payload columns are converted separately to
row formats, with key columns being converted to normalized
keys. This conversion is performed by copying one ‘group’
of vectors at a time, one vector at a time, making this
an efficient and mostly cache-resident process. We copy the
values in a vector using tight loops templated on a data type.
Both row formats use 8-byte alignment and have fixed-size
rows; variable-sized types like strings are stored separately.
Therefore, we encode only a prefix of variable-sized types
like strings in our normalized keys: We compare the rest
of the string only if the prefixes are equal. For strings, we
encode the first 12 bytes. However, this could be chosen at
runtime based on available statistics. When the amount of
data collected by a thread reaches a threshold, we sort the
normalized keys with a thread-local radix sort, or pdqsort if
there are strings, with memcmp as the comparison function.
We use a version of pdqsort that is modified to specifically
deal with our normalized keys, such that we can use inlined
tuple comparisons2. Then, we reorder the payload, creating
runs of sorted data that are added to a thread-global state.

After all the input data has been added to the global state, we
start a 2-way cascaded merge sort. This is trivial to parallelize
when there are many more sorted runs than threads, as we
can assign each thread to merge two sorted runs. However, as
the runs get merged, parallelization falls apart, until the last
two sorted runs are merged by a single thread. Therefore, we
parallelize this phase using Merge Path [3]. Merge Path creates
partitions that can be merged independently and, therefore, in
parallel. The partition boundaries are efficiently computed with
a binary search. During merge sort, we compare tuples with

2The DuckDB source code can be found at https://github.com/duckdb/
duckdb

https://github.com/duckdb/duckdb
https://github.com/duckdb/duckdb


Fig. 9. Full sorting pipeline in DuckDB. Incoming vectors from worker threads (illustrated as T1 and T2 in the figure) are converted to 8-byte aligned row
formats. Key columns are normalized and stored separately from the payload. The normalized keys are sorted with radix sort or pdqsort, creating sorted runs.
The sorted runs are then partitioned and merged in parallel until one run remains. Finally, the result is converted back to vectors.

memcmp. We use static pre-compiled versions of the mem*
functions as described in Section VI.

We compare DuckDB’s sorting performance with four other
OLAP/HTAP engines: ClickHouse [14], MonetDB [15], Hy-
Per [11], and Umbra [16]. OLTP-focused systems like Post-
greSQL and MySQL cannot deliver competitive performance
on sorting large datasets. Despite their row-major data layouts,
their execution engines suffer from large per-value overheads.

ClickHouse uses a columnar format throughout the sort
and performs thread-local sorts with radix sort if sorting by
a single integer column; otherwise, it uses pdqsort using a
tuple-at-a-time comparison approach. JIT compilation is used
to reduce some of the interpretation overhead. After the thread-
local sorts are done, the sorted runs are merged using a k-
way merge. MonetDB also uses a columnar format throughout
the sort, using a single-threaded quicksort implementation.
A subsort approach is used when sorting by multiple key
columns. After sorting the key columns, the payload is col-
lected in sorted order. HyPer and Umbra have a compiled,
row-based sorting implementation similar to what is described
in [6]. Threads perform a thread-local quicksort that is similar
to pdqsort. The results are then merged using a parallel k-
way merge. This merge is performed on pointers rather than
physically moving the data. The data is physically collected in
the sorted order when the output of the sort operator is read.

A. Benchmarking Relational Sorting

Although sorting can easily dominate the runtime of a
query, isolating the sorting performance of a database system
in a benchmark is difficult because we can only reliably
observe end-to-end query runtime without access to the source
code. In addition, streaming query execution interleaves the
execution of multiple operators, which further complicates
isolating sorting performance, even if the system has a query
profiler. Measuring end-to-end query runtime introduces un-
wanted overhead unrelated to sorting, e.g., parsing, optimizing,

scanning base tables, and transferring the result set through a
client protocol. Especially the latter is costly and can easily
dominate the query execution time for large result sets [21].

Therefore, we want to use a query that produces a small
result set and where execution time is dominated by sorting.
A full sort is often optimized out of the query plan if it is
not strictly needed. For example, ORDER BY ... LIMIT
1 will trigger a top N operator rather than the full sort
operator. Furthermore, if we aggregate over a subquery that
sorts, the sort will likely be discarded by the optimizer because
it is irrelevant to the aggregate. We can circumvent this
by disabling the optimizer, which is often possible using a
configuration setting. This is inadvisable, however, as disabling
it may impact performance differently across systems. Instead,
we ‘trick’ the optimizer with the following query:
SELECT count(payload_column),
FROM (SELECT payload_column

FROM input_table
ORDER BY key_column1,

key_column2,
...

OFFSET 1);

In this query, the count aggregate reduces the size of the result
set to 1, making the result set serialization negligible. The
count aggregate reads the sorted subquery, forcing systems
that lazily collect a sorted payload to collect it fully. This is an
important detail that ensures that all systems under benchmark
perform the same work. The count aggregate is cheap to
compute and therefore does not add noticeable overhead to the
query. Finally, we add the OFFSET 1 so that the optimizers
in the systems we benchmarked do not optimize the ORDER
BY in the subquery away3. We repeat this query 5 times and
report only the median end-to-end runtime.

3The source code for our end-to-end benchmarks can be found at https:
//github.com/lnkuiper/experiments/sorting

https://github.com/lnkuiper/experiments/sorting
https://github.com/lnkuiper/experiments/sorting


B. Random Integers & Floats

For our first benchmark, we generate two sets of 10 tables
containing 10 to 100 million rows in increments of 10 million.
The first set contains 32-bit integers from 0 to 99.999.999,
shuffled. The second set contains 32-bit floating point numbers
between −1e9 and 1e9, taken from a random distribution.
With this benchmark, we measure raw, single-key sorting per-
formance. Comparing floats is more expensive than comparing
integers; therefore, we expect integer sorting to be slightly
faster. Following the findings in our micro-benchmarks, we
also expect the performance of the columnar approaches of
ClickHouse and MonetDB to degrade more quickly with
the number of tuples than the row-based approaches due
to a worse cache performance. We benchmark the sorting
performance of all systems using the m5d.8xlarge instance.

We show the results of this benchmark in Figure 10.
MonetDB is much slower than the other systems; therefore,
we have cut off the figure to make the differences between the
other systems more clearly visible. MonetDB’s single-threaded
sort takes 29.18s and 36.39s for 100 million integers and
floats, respectively. For reference, when limited to a single
thread, DuckDB takes 10.41s for the integers and 9.14s for
the floats. As expected, all systems sort floats slightly slower
than integers due to the more expensive comparison function
of floats, except DuckDB. DuckDB does not suffer from this
because it encodes both the floats and integers as normalized
keys, then sorts them precisely the same. In this benchmark
specifically, DuckDB sorts the floats faster than the integers
because the floats have a more uniform distribution, making
radix sort more effective.

ClickHouse’s sort is competitive with DuckDB, HyPer, and
Umbra at 10 million integers, but as the data size increases,
its performance degrades more quickly than the other three
systems. This is in line with our expectations, as the columnar
format that ClickHouse uses has a worse cache performance.
DuckDB, HyPer, and Umbra, all of which use a more cache-
efficient row-based approach to sorting, show strong scaling
with the number of tuples. DuckDB sorts 100 million integers
in 1.55s. HyPer and Umbra, which have similar implemen-
tations, have a very similar performance on this benchmark,
with Umbra being slightly faster than HyPer.

10 20 30 40 50 60 70 80 90 100
Rows [millions]

0

2

4

6

8

10

E
xe
cu
tio
n 
tim
e 
[s
]

Integers

ClickHouse
DuckDB
HyPer
MonetDB
Umbra

10 20 30 40 50 60 70 80 90 100
Rows [millions]

Floats

Fig. 10. Execution times (lower is better) of sorting 10 to 100 million random
integers and floats in increments of 10 million.

C. TPC-DS Catalog Sales Table

For our second benchmark, we use the largest table from
TPC-DS, catalog_sales, at scale factors 10 and 100.
The cardinality of this table can be found in Table IV.
We select only cs_item_sk, and sort it by up to four
key columns: cs_warehouse_sk, cs_ship_mode_sk,
cs_promo_sk, and cs_quantity. With this benchmark,
we measure how well the systems deal with multiple key
columns, which should increase the cost of comparing tuples.
Our micro-benchmarks would suggest that the performance of
columnar sorting approaches degrades more with additional
key columns because they cause more random access than
row-based approaches.

TABLE IV
CARDINALITY OF TPC-DS TABLES.

SF catalog_sales customer

10 14.401.261 -
100 143.997.065 2.000.000
300 - 5.000.000

We show the results of sorting the catalog_sales
table in Figure 11. Again, MonetDB’s performance is much
slower than the other systems; therefore, we cut off the
figure. MonetDB is around 3x slower when sorting by four
key columns than by one key column. ClickHouse has a
competitive sorting performance when sorting by one key
column because it only has random access in one column
and uses radix sort. However, when sorting by two key
columns, ClickHouse slows down by around 4x compared to
sorting by one column because it switches from radix sort to
pdqsort with a tuple-at-a-time comparison function that has
branches and causes random access in both key columns. As
expected, DuckDB’s, HyPer’s, and Umbra’s row-based sorting
approaches lose less performance here, as they have good
cache performance when comparing subsequent key columns.
The cost of the comparison function, however, does still matter
for the row-based approaches: Umbra is up to 2.43x and 2.96x
slower when sorting four key columns than when sorting one
key column at scale factors 10 and 100, respectively, while
DuckDB and HyPer are only around 1.5x slower.

1 2 3 4
Key columns

0.0

0.5

1.0

1.5

2.0

2.5

3.0

E
xe

cu
tio

n 
tim

e 
[s
]

SF10

ClickHouse
DuckDB
HyPer
MonetDB
Umbra

1 2 3 4
Key columns

0

5

10

15

20

25

30
SF100

Fig. 11. Execution times (lower is better) at scale factor 10 and 100 of
sorting 1 to 4 key columns (cs_warehouse_sk, cs_ship_mode_sk,
cs_promo_sk, cs_quantity) of the catalog_sales table.



D. TPC-DS Customer Table

For our third benchmark, we use the customer ta-
ble from TPC-DS at scale factors 100 and 300. The
cardinality of this table can be found in Table IV.
We select c_customer_sk from this table, and sort
it by either c_birth_year, c_birth_month, and
c_birth_day, all three of which are INTEGER columns,
or by c_last_name and c_first_name, both of which
are VARCHAR columns. With this benchmark, we measure how
well the systems sort by fixed- vs. variable-sized types. Com-
paring strings is much more costly than comparing integers;
therefore, we expect that sorting strings will be slower.

We show the results of sorting the customer table in
Figure 12. We have again cut off the figure so the differences
between the systems are more visible. On the x-axis we have
the two categories: integer and string. As expected, sorting
strings is slower than sorting integers for all five systems.
For ClickHouse and MonetDB, this difference is around 3x.
For HyPer and Umbra, this difference is much lower, between
1.24x and 1.62x. At scale factor 300, the difference between
sorting the integers and strings is higher for DuckDB, at
2.03x. Despite this, DuckDB has a competitive string sorting
performance. This larger difference between sorting integers
and strings for DuckDB can be attributed to using radix sort
for the integers while using pdqsort for the strings.

integer string0.0

0.1

0.2

0.3

0.4

0.5

E
xe
cu
tio
n 
tim

e 
[s
]

SF100

integer string0.0

0.2

0.4

0.6

0.8

1.0
SF300

ClickHouse
DuckDB
HyPer
MonetDB
Umbra

Fig. 12. Execution times (lower is better) at scale factor 100 and 300
of sorting the c_birth_year, c_birth_month, and c_birth_day
columns (integer), and the c_last_name and c_first_name columns
(string) of the customer table.

VIII. CONCLUSION

In this work, we have discussed the challenges of sorting
relational data efficiently in OLAP systems. Following this
discussion, we have evaluated different approaches to sorting
data using micro-benchmarks. These approaches differed in
their row and columnar data formats, their interpreted and
compiled execution engines and tuple comparison method. We
have shown that, for columnar data, sorting by one column at
a time is much more efficient than sorting by all columns
at once. This efficiency can be attributed to a better cache
performance and fewer branches in the tuple comparison
function. However, we have found that sorting data in a row
format is almost always better than sorting columnar data,
mostly due to an even better cache performance.

Following these findings, we have identified that database
systems with a compiling query execution engine can effi-
ciently sort row format data by generating query-specific data
types and a comparison function. In systems with a vectorized
interpreted engine, however, the efficiency of sorting rows is
hindered by interpretation and function call overhead in the
comparison function. To overcome this overhead, we have
proposed using key normalization, pre-compiled memcpy and
memcmp, and radix sort. Radix sort, however, is less effective
when sorting strings. In this case, a comparison-based sorting
algorithm like pdqsort is superior.

Finally, we implemented and released these techniques in
DuckDB, which has a vectorized interpreted query execution
engine. We evaluated our implementation with end-to-end
sorting benchmarks. We compared our results on this bench-
mark with four other analytical database management systems,
which have a different execution engine. This comparison
showed that our sort implementation matches or outperforms
all other systems under benchmark and, therefore, that the
proposed techniques effectively overcome the interpretation
and function call overhead that systems with an interpreted
execution engine theoretically would be at a disadvantage of.

IX. FUTURE WORK

DuckDB uses pdqsort in its thread-local sorts when strings
are present; otherwise, it uses radix sort. Variables other than
the data type affect the efficiency of these algorithms, for
example, key size, number of tuples, the estimated number of
unique values, and other statistics. A heuristic that takes these
variables into account could improve the algorithm choice.
Additionally, pdqsort could be used within the recursive calls
to MSD radix sort, which may improve sorting performance
even further.

Besides the sort operator, the aggregate, join, and window
operators are also blocking operators. They materialize their
input because they cannot stream data, i.e., all input data must
be consumed and processed before data can be output. In
DuckDB, these operators use a unified row format. However,
DuckDB’s vectorized engine moves vectors between operators.
When we chain blocking operators, for example, when we
aggregate over the output of a join or sort the output of an
aggregate, the data is converted from rows to vectors and back.
We could prevent these conversions by allowing the execution
engine to move row format data between operators.

The same blocking operators risk running out of memory
because they must materialize their input. When the data
size exceeds the memory limit, many main-memory database
systems either cannot complete the query or switch to an
out-of-core strategy, orders of magnitude slower than the in-
memory strategy. This could be overcome by designing these
operators so that their performance gracefully degrades as the
data size exceeds the memory limit. Utilizing DuckDB’s row
format to be able to offload the data to storage in a unified
way could facilitate this.



REFERENCES

[1] A. LaMarca and R. E. Ladner, “The Influence of Caches on the
Performance of Sorting,” Journal of Algorithms, vol. 31, no. 1,
pp. 66–104, 1999. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0196677498909853

[2] S. Edelkamp and A. Weiß, “BlockQuicksort: Avoiding Branch
Mispredictions in Quicksort,” ACM J. Exp. Algorithmics, vol. 24, Jan.
2019. [Online]. Available: https://doi.org/10.1145/3274660

[3] O. Green, S. Odeh, and Y. Birk, “Merge Path - A Visually Intuitive
Approach to Parallel Merging,” CoRR, vol. abs/1406.2628, 2014.
[Online]. Available: http://arxiv.org/abs/1406.2628

[4] O. R. L. Peters, “Pattern-defeating Quicksort,” CoRR, vol.
abs/2106.05123, 2021. [Online]. Available: https://arxiv.org/abs/2106.
05123

[5] P. A. Boncz, M. Zukowski, and N. Nes, “MonetDB/X100: Hyper-
Pipelining Query Execution,” in Second Biennial Conference on
Innovative Data Systems Research, CIDR, Online Proceedings.
Asilomar, CA, USA: www.cidrdb.org, 2005, pp. 225–237. [Online].
Available: http://cidrdb.org/cidr2005/papers/P19.pdf

[6] V. Leis, P. Boncz, A. Kemper, and T. Neumann, “Morsel-Driven
Parallelism: A NUMA-Aware Query Evaluation Framework for the
Many-Core Age,” in Proceedings of the 2014 ACM SIGMOD
International Conference on Management of Data, ser. SIGMOD ’14.
New York, NY, USA: Association for Computing Machinery, 2014, pp.
743–754. [Online]. Available: https://doi.org/10.1145/2588555.2610507

[7] M. Freitag, M. Bandle, T. Schmidt, A. Kemper, and T. Neumann,
“Adopting Worst-Case Optimal Joins in Relational Database Systems,”
Proc. VLDB Endow., vol. 13, no. 12, pp. 1891–1904, Jul. 2020.
[Online]. Available: https://doi.org/10.14778/3407790.3407797

[8] Z. Khayyat, W. Lucia, M. Singh, M. Ouzzani, P. Papotti, J.-
A. Quiané-Ruiz, N. Tang, and P. Kalnis, “Lightning Fast and
Space Efficient Inequality Joins,” Proc. VLDB Endow., vol. 8,
no. 13, pp. 2074–2085, Sep. 2015. [Online]. Available: https:
//doi.org/10.14778/2831360.2831362

[9] M. Bandle, J. Giceva, and T. Neumann, “To Partition, or Not
to Partition, That is the Join Question in a Real System,” in
Proceedings of the 2021 International Conference on Management
of Data, ser. SIGMOD ’21. New York, NY, USA: Association
for Computing Machinery, 2021, p. 168–180. [Online]. Available:
https://doi.org/10.1145/3448016.3452831

[10] G. Goetz, “Implementing Sorting in Database Systems,” ACM Comput.
Surv., vol. 38, no. 3, pp. 10–es, Sep. 2006. [Online]. Available:
https://doi.org/10.1145/1132960.1132964

[11] A. Kemper and T. Neumann, “HyPer: A Hybrid OLTP & OLAP Main
Memory Database System Based on Virtual Memory Snapshots,” in
Proceedings of the 2011 IEEE 27th International Conference on Data
Engineering, ser. ICDE ’11. USA: IEEE Computer Society, 2011,
pp. 195–206. [Online]. Available: https://doi.org/10.1109/ICDE.2011.
5767867

[12] T. Kersten, V. Leis, A. Kemper, T. Neumann, A. Pavlo, and P. Boncz,
“Everything You Always Wanted to Know about Compiled and Vector-
ized Queries but Were Afraid to Ask,” Proc. VLDB Endow., vol. 11,
no. 13, pp. 2209–2222, sep 2018.

[13] J. Sompolski, M. Zukowski, and P. Boncz, “Vectorization vs.
Compilation in Query Execution,” in Proceedings of the Seventh
International Workshop on Data Management on New Hardware,
ser. DaMoN ’11. New York, NY, USA: Association for Computing
Machinery, 2011, pp. 33–40. [Online]. Available: https://doi.org/10.
1145/1995441.1995446

[14] B. Imasheva, A. Nakispekov, A. Sidelkovskaya, and A. Sidelkovskiy,
“The Practice of Moving to Big Data on the Case of the NoSQL
Database, ClickHouse,” in Optimization of Complex Systems: Theory,
Models, Algorithms and Applications, WCGO 2019, World Congress on
Global Optimization, Metz, France, 8-10 July, 2019, ser. Advances in
Intelligent Systems and Computing, vol. 991. Springer, 2019, pp. 820–
828. [Online]. Available: https://doi.org/10.1007/978-3-030-21803-4 82

[15] S. Idreos, F. Groffen, N. Nes, S. Manegold, S. Mullender, and
M. Kersten, “MonetDB: Two Decades of Research in Column-oriented
Database Architectures,” IEEE Data Eng. Bull., vol. 35, no. 1,
pp. 40–45, 2012. [Online]. Available: http://sites.computer.org/debull/
A12mar/monetdb.pdf

[16] T. Neumann and M. J. Freitag, “Umbra: A Disk-Based System
with In-Memory Performance,” in 10th Conference on Innovative

Data Systems Research, CIDR 2020, Amsterdam, The Netherlands,
January 12-15, 2020, Online Proceedings. Amsterdam, Netherlands:
www.cidrdb.org, 2020. [Online]. Available: http://cidrdb.org/cidr2020/
papers/p29-neumann-cidr20.pdf

[17] D. Lemire and O. Kaser, “Reordering Columns for Smaller Indexes,”
Inf. Sci., vol. 181, no. 12, pp. 2550–2570, jun 2011. [Online]. Available:
https://doi.org/10.1016/j.ins.2011.02.002

[18] G. Moerkotte, “Small Materialized Aggregates: A Light Weight Index
Structure for Data Warehousing,” in Proceedings of the 24rd Interna-
tional Conference on Very Large Data Bases, ser. VLDB ’98. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1998, pp. 476–
487.

[19] M. Zukowski, N. Nes, and P. Boncz, “DSM vs. NSM: CPU Performance
Tradeoffs in Block-Oriented Query Processing,” in Proceedings of
the 4th International Workshop on Data Management on New
Hardware, ser. DaMoN ’08. New York, NY, USA: Association
for Computing Machinery, 2008, pp. 47–54. [Online]. Available:
https://doi.org/10.1145/1457150.1457160

[20] S. Manegold, P. Boncz, N. Nes, and M. Kersten, “Cache-Conscious
Radix-Decluster Projections,” in Proceedings of the Thirtieth Interna-
tional Conference on Very Large Data Bases - Volume 30, ser. VLDB
’04. USA: VLDB Endowment, 2004, pp. 684–695.

[21] M. Raasveldt and H. Mühleisen, “Don’t Hold My Data Hostage:
A Case for Client Protocol Redesign,” Proc. VLDB Endow.,
vol. 10, no. 10, pp. 1022–1033, Jun. 2017. [Online]. Available:
https://doi.org/10.14778/3115404.3115408

[22] D. R. Musser, “Introspective Sorting and Selection Algorithms,” Softw.
Pract. Exper., vol. 27, no. 8, pp. 983–993, aug 1997.

[23] G. Graefe, “Encapsulation of Parallelism in the Volcano Query
Processing System,” in Proceedings of the 1990 ACM SIGMOD
International Conference on Management of Data, ser. SIGMOD ’90.
New York, NY, USA: Association for Computing Machinery, 1990, pp.
102–111. [Online]. Available: https://doi.org/10.1145/93597.98720

[24] Y. Zhao, P. M. Deshpande, and J. F. Naughton, “An Array-Based
Algorithm for Simultaneous Multidimensional Aggregates,” SIGMOD
Rec., vol. 26, no. 2, pp. 159–170, jun 1997. [Online]. Available:
https://doi.org/10.1145/253262.253288

[25] M. W. Blasgen, R. G. Casey, and K. P. Eswaran, “An Encoding
Method for Multifield Sorting and Indexing,” Commun. ACM,
vol. 20, no. 11, pp. 874–878, Nov. 1977. [Online]. Available:
https://doi.org/10.1145/359863.359892

[26] M. M. Astrahan, M. W. Blasgen, D. D. Chamberlin, K. P. Eswaran,
J. N. Gray, P. P. Griffiths, W. F. King, R. A. Lorie, P. R. McJones,
J. W. Mehl, G. R. Putzolu, I. L. Traiger, B. W. Wade, and V. Watson,
“System R: Relational Approach to Database Management,” ACM
Trans. Database Syst., vol. 1, no. 2, pp. 97–137, jun 1976. [Online].
Available: https://doi.org/10.1145/320455.320457

[27] M. Poess, B. Smith, L. Kollar, and P. Larson, “TPC-DS, Taking
Decision Support Benchmarking to the next Level,” in Proceedings
of the 2002 ACM SIGMOD International Conference on Management
of Data, ser. SIGMOD ’02. New York, NY, USA: Association
for Computing Machinery, 2002, pp. 582–587. [Online]. Available:
https://doi.org/10.1145/564691.564759

[28] L. Kuiper, “Fastest table sort in the West - Redesigning DuckDB’s
sort,” 2021. [Online]. Available: http://bit.ly/duckdb-sort

https://www.sciencedirect.com/science/article/pii/S0196677498909853
https://www.sciencedirect.com/science/article/pii/S0196677498909853
https://doi.org/10.1145/3274660
http://arxiv.org/abs/1406.2628
https://arxiv.org/abs/2106.05123
https://arxiv.org/abs/2106.05123
http://cidrdb.org/cidr2005/papers/P19.pdf
https://doi.org/10.1145/2588555.2610507
https://doi.org/10.14778/3407790.3407797
https://doi.org/10.14778/2831360.2831362
https://doi.org/10.14778/2831360.2831362
https://doi.org/10.1145/3448016.3452831
https://doi.org/10.1145/1132960.1132964
https://doi.org/10.1109/ICDE.2011.5767867
https://doi.org/10.1109/ICDE.2011.5767867
https://doi.org/10.1145/1995441.1995446
https://doi.org/10.1145/1995441.1995446
https://doi.org/10.1007/978-3-030-21803-4_82
http://sites.computer.org/debull/A12mar/monetdb.pdf
http://sites.computer.org/debull/A12mar/monetdb.pdf
http://cidrdb.org/cidr2020/papers/p29-neumann-cidr20.pdf
http://cidrdb.org/cidr2020/papers/p29-neumann-cidr20.pdf
https://doi.org/10.1016/j.ins.2011.02.002
https://doi.org/10.1145/1457150.1457160
https://doi.org/10.14778/3115404.3115408
https://doi.org/10.1145/93597.98720
https://doi.org/10.1145/253262.253288
https://doi.org/10.1145/359863.359892
https://doi.org/10.1145/320455.320457
https://doi.org/10.1145/564691.564759
http://bit.ly/duckdb-sort

	Introduction
	Sorting Relational Data
	Methodology
	Workload
	Experimental Setup

	DSM vs. NSM
	Sorting Columnar Data
	Sorting Row Data

	Query Engines and Sorting
	Compiled Sorting
	Vectorized (Interpreted) Sorting

	Sorting Rows in an Interpreted Query Execution Engine
	Normalized Keys
	The mem* Functions
	Radix Sort

	Evaluation
	Benchmarking Relational Sorting
	Random Integers & Floats
	TPC-DS Catalog Sales Table
	TPC-DS Customer Table

	Conclusion
	Future Work
	References

