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Abstract—In many systems providing storage and retrieval
operations on data, indices are used to make these operations
more efficient. Distributed storage systems provide means to
distribute the burden of storing and retrieving data onto multiple
different computers. Routing indices can answer the central
question in these systems: Where should one look for a specified
data item? To be able to query for different columns in a relation
or different entries in tuples, indexing for multiple dimensions
is necessary. Our group applies a swarm-based approach to
distributed storage leading to a new class of distributed systems,
which are fully self-organized in their behavior and lack any
shared global data structures. In this paper, we research whether
multiple levels of routing indices can be maintained and used in
such a distributed and self-organized storage service. To achieve
this, we look into different types of indices and evaluate them in
an experiment.

I. INTRODUCTION

The efficient storage of large quantities of data is a crucial
requirement for the operation of today’s information systems.
Many systems providing storage and retrieval operations for
these quantities use indices in order to to support these
operations efficiently. For example, a relational database can be
configured to create an index on a specific column for a relation.
Additional storage capacity and processing power is then spent
to create and store a specialized access structure for this column
for all entries in the relation. Once this is completed, queries
including this column can be evaluated more efficiently during
query processing. In general, indices are positioned in a trade-
off between different types of efforts. The decision to spend
resources in order to create an index is usually justified by
vast resource savings during operation processing [1]. Indices
depend on the data they have been created from: Should data
items be removed or changed, indices containing these have
to be updated as well.

Since the amounts of data to be stored by today’s applications
can easily outmatch the capabilities of single computers,
distributed storage systems provide means to distribute the
burden of storing and retrieving this data onto multiple different
computers [2]. Two questions have to be answered by the entity
controlling the storage and retrieval operations: Where should a
data item be stored, and where should one look for a specified
data item during retrieval. The answers to these questions are
interleaved, and various different methods have been proposed
to create these answers.

Peer-to-Peer (P2P) storage systems distribute not only the
stored data, but also the control over operations onto multiple
computers (“nodes”). Each node is capable of performing
storage and retrieval operations on the entire set of data
available on all nodes [3]. The means to achieve this differ: In
most widely used approaches a synthetic network structure is
constructed between the nodes to provide an access path, in
others simple broadcasting methods are used. Routing indices
can also be constructed in a distributed way and are used in
various P2P systems to locate stored data.

To remove the dependency on fixed overlay network struc-
tures, another approach is to use self-organization techniques
found in nature, especially in some species of ants. These
swarm-based approaches applied to distributed storage lead to a
new class of distributed systems, which are fully self-organized
in their behavior and lack any shared global data structures [4].
Similar to P2P systems, operations can be initiated by any node,
and the set of data items stored is distributed over the nodes.
Trails of “virtual pheromones” are used to route queries to the
node where relevant data is stored. These trails are created
on-demand for every successful operation, and then speed up
subsequent requests. Therefore, these pheromone trails can
be compared to an index structure as described above: Their
creation requires some effort, and they are used to speed up
storage operations.

Many distributed storage systems such as key/value stores
only support one single index on a single attribute for data
stored. This enables them to use comparably simple and well-
developed routing algorithms for their storage and retrieval
operations. Other classes of systems, however, require more
than one distributed index. Examples for these classes include
distributed relational databases or distributed tuple spaces. To
be able to query for different columns in a relation or different
entries in tuples, indexing for multiple dimensions has to be
supported. Additionally, the comparison operator used on the
index may not always be the “equals” operator, range and
distance queries using arbitrary metrics are also required by
many applications.

For this paper, our central research question is therefore:
How can multiple levels of routing indices be maintained and
used in a distributed, swarm-based, and self-organized storage
service?



The remainder of this paper is structured as follows: We
begin with providing an overview over related work both
on distributed indices as well as on self-organized systems
in Section II. The concepts and algorithms behind our Self-
Organized Semantic Storage Service are outlined in Section
III, followed by different types of indices to be considered. We
then describe our evaluation methods and results in Section V
and finally conclude this paper in Section VI.

II. RELATED AND PREVIOUS WORK

While indices have been used by relational databases for
decades [1], the index architectures described in this paper
are not focusing on speeding up the access to data stored in
the secondary storage of a single computer, but rather aiding
operation routing decisions in a distributed storage system.
Early systems such as Napster used central “index” servers
to determine the nodes storing data relevant to a query [5].
Later approaches did not rely on these central systems to
remove a single point of failure. There, the processing of
storage and retrieval operations relies on proper query routing
methods, and routing indices can be used to improve routing
accuracy and efficiency. Distributed query processing with its
selection of multiple participating sites, cost estimation, and
query optimization can then be performed on top of these
routing methods [6].

A. Routing Indices

Crespo and Garcia-Molina described the concept of routing
indices, which are used to forward single-key queries to
neighboring nodes within the network which are more likely
to produce a result [7]. This can be compared to the Distance-
Vector method used to calculate routing tables in computer
networks. Indices are created as connections to other nodes
are established, which leads to high reorganization efforts
for unstable networks. This approach has been extended by
Karnstedt et al. for more complex XML data structures and
corresponding queries [8]. Brunkhorst et al. further expand the
concept with the distinction between different classes of nodes
and different routing index granularities [9]. They especially
assume a well-defined structure within the stored data, such
as RDF. Examples for a distributed P2P system to execute
retrieval operations on RDF data are the Edutella system by
Neidl et al. [10] or YARS2 by Harth et al. [11].

B. Self-Organized Storage Systems

Swarm intelligence has been identified to be a powerful
family of methods by Bonabeau et al. [12]. Menezes and
Tolksdorf applied swarm intelligence to a distributed tuple space
built to implement the Linda coordination model [13], [14].
This space can also be regarded as a self-organized distributed
storage system. They introduced basic concepts of ant colony
algorithms that are suitable for tuple storage and retrieval [13].
Following a trend of trading away soundness and completeness
to gain efficiency in the Semantic Web area as summarized by
Fensel et al. [15], Tolksdorf and Augustin then applied this idea
to distributed RDF storage and used a syntax-based similarity

metric to cluster syntactically similar resources on neighboring
storage nodes. Their concept was successfully evaluated using
simulation runs [16]. A similarity metric based on semantic
similarity measures and aimed at achieving the clustering of
related concepts was introduced in [17]. Furthermore, we
have contributed enhancements to the concept towards an
full implementation of a distributed Self-Organized Semantic
Storage System (S4) and also presented preliminary evaluation
results using the target implementation [4]. We will introduce
our approach, its routing methods and index structures in the
following section.

III. ANT BEHAVIOUR FOR DISTRIBUTED STORAGE

As our group has shown in previous research, the behaviour
found in several ant species to forage for food has been found
suitable to implement a scalable distributed and self-organized
storage system [4], [18]. Here, ants on the search for food
start off from their nest on a random walk on the landscape.
They continue on this random walk until they encounter food.
A portion of the food found is then picked up and carried
back to the nest, which is located using its distinct nest scent.
On the way back to their nest ants leave a trail of chemical
pheromones behind, which form a pheromone path from the
food source to the nest. Now, if other ants on their random
walk in search for food encounter this pheromone trail, they
are inclined – albeit not forced – to follow it in the direction of
the food. Should they also find food following this path, they
will further increase the pheromone intensity on their way back,
also increasing the inclination of other ants to also follow this
path. As pheromone trails also evaporate over time, old trails
for example leading to depleted food sources are falling out of
favor quickly. From an Artificial Intelligence perspective, this
represents a positive enforcement mechanism between large
numbers of independent simple agents [19].

A. Storage System Concept

Our Self-organized Semantic Storage Service (S4) provides a
storage system based on the described foraging algorithm. The
data in this store is distributed over a network of homogeneous
nodes, each of which provides access to the entire store.
There is no central instance monitoring the entire network, all
decisions are based on the information that is locally available.
This decentralized organization enables the system to offer
a high degree of scalability and robustness. In our system,
a number of computers (“nodes”) interlinked by network
connections are regarded as a landscape for virtual ants. Each
node is connected to a limited set of other nodes, and stores
a portion of the data to stored in the entire system. Each
node offers an interface for client applications, able to store
and retrieve data items. Storage and retrieval requests are
modeled to be virtual ants able to autonomously move about on
that landscape, typically requiring multiple hops over network
connections between nodes in order to find a data item. On
each node, requests compute the node to be visited next from
the nodes directly connected to the current node using virtual
pheromone trails. These virtual pheromone trails are laid tracing



back the path successful operations, aiding current and future
operations in their routing decisions. A small random factor
is also included in those routing decisions, modeling the ant’s
inclination to follow pheromone paths. As a replacement for a
nest scent, operations carry a path history of visited nodes. If
requests are successful, this path is traced back and the virtual
pheromones are intensified, yielding the described positive
enforcement for each stored data item.

The entire system is able to globally optimize request routing
for all stored data items, given a sufficient number of subsequent
requests for a data item [20], [4]. One main benefit is the
complete in-transparency of the actual location of stored data
inside this system. This allows the system to adapt very easily to
changing data characteristics and fluctuations in data popularity.

Data is written to the store in form of tuples, ordered lists
of values with a predefined number of elements. The most
common type of tuples used in context of the system are RDF
triples as defined by the Resource Description Framework
proposed by the W3C for the expression of semantic metadata.
However, the system is not limited to the storage of semantic
information since it can process any kind data that is provided
as tuples.

B. Data and Index Updates

The second central concept for the storage and retrieval of
tuples is the local concentration of similar tuples as clusters
on the same or a neighboring node. This is required to avoid
ambiguity in the pheromone paths. When written to the store,
a single tuple is processed by a similarity function that maps
the tuple’s value to a discrete range of numerical values, the
cluster key. This value is then being used for the clustering
of the stored data: Write operation moves tuples through the
storage network, searching for a cluster that fits their value. On
every node, the cluster key is being compared to the reference
values of the clusters stored on the node. Once the fitting
cluster is reached, the tuple is stored on the node and a virtual
pheromone trail is laid out on the edges of the network, back
to the node the tuple originated from. Should no fitting cluster
be found within a given limit, the tuple is simply stored on
the node the write operation is currently visiting.

Using this technique, a data structure is generated that leads
the way to each particular cluster in the network. As the virtual
pheromone trails are updated constantly with every read and
write operation, this structure always represents the current
state of the clusters. In other words, the virtual pheromones
constitute a routing index on the data in the store which can
be compared to the approach presented by Crespo and Garcia-
Molina [7].

Since the virtual pheromone trails evaporate over time, the
index is constantly updated by the read and write operations.
The new pheromones that represent the current structure of the
stored data replace the outdated information. This evaporation
is performed on every read or write access on the index.

To retrieve stored tuples, a retrieval template is defined. This
template consists of a required entry for tuples to match. For
example, a tuple (a, b, c) could be retrieved by using a template

of the form (a, *, *) with * being a wild card for any possible
value. Using this template, a read operation is requested on an
arbitrary node in the storage network. The node creates the
retrieval operation which first checks the local storage and –
should there be no match – is being forwarded to the neighbor
node most likely to contain or lead to the matching cluster.
This likeliness is calculated using virtual pheromones stored on
the connections to the neighboring nodes. These pheromones
express the contents of the clusters which can be found in the
part of the network reachable by the corresponding connection.

As the amount of cluster values is directly dependent on the
number of elements stored in the system and the pheromone
table has to be maintained on every node, this would present
a scalability problem. Therefore the virtual pheromones on
the connections to the neighboring nodes are aggregated as
a range of cluster key values. Every range is defined by four
values; minimum, maximum, average and element count. The
number of ranges stored on a particular connection is limited,
thus keeping the space used by this data structure at a constant
level.

IV. ROUTING INDICES

In this section, we will investigate the explicit requirements
to create and maintain such an index as well as the possibilities
for additional levels of indexing. As we have shown in the
previous section, the virtual pheromone trails along with the
stored elements constitute a routing index for a single entry of
the stored tuples. Queries using keys other than the configured
and present one are not supported in this setting due to missing
pheromone trails for any other key. If the first tuple entry is
configured to be relevant for tuple storage, queries using – for
example – the second tuple entry would require a “full network
scan”, where every node is queried for matching data items

To support retrieval and storage operations for a particular
entry on the stored tuples, the following requirements have to
be met:

• Key definition – The tuple entry relevant for the generation
of cluster keys used in the routing process

• Similarity Measure – A method to convert a tuple entry
into a cluster key on a continuous and limited scale. In our
context, similarity measures map tuple entries to floating-
point values in the interval [0,1]. Similarity calculation
has to be performed independently on every node, thus
all required information should be present on the current
node.

• Pheromone Path Layer – For every index, pheromone
information has to be kept on every node. However, due
to the limitation of pheromone data stored as described
in the previous section, the additional overhead for new
pheromone path layers is limited and grows only linearly.

• Independent Storage – As only the cluster key determines
the location of a tuple in the network, the tuple has to
be stored on the node the pheromone path leads to. This
requires independent storage for additional index levels,
as different indexing levels can lead to different storage
locations for a single tuple. Hence, every new index



requires its own independent storage layer and cluster set
throughout the entire network. This constitutes the main
trade-off for additional indices, and costs and benefits
have to be weighted against each other.

The costs of maintaining a single index thus consist of the
storage required to keep the pheromone paths as well as the
storage required to provide the independent storage layer. As a
simplification, the storage space needed to store a single tuple
or primitive value is assumed to be 1. For e tuples to be stored
in a network of s nodes, a neighbor connection count of n and
a range limit on the neighbor connections of c, and a range
definition size of 4 this evaluates to

es := e+ s× n× c× 4

This can now be considered the general cost to construct
an additional index level within the S4 system, provided a
compatible similarity measure can be constructed. We have
identified a special case for additional indices: If an additional
index is using the same similarity measure as another index,
they can share a pheromone path layer. For example, if a tuple
with three string entries (as in RDF) is to be indexed using
all entries as indices, the additional two index layers require
2× e storage space.

A. Heterogeneous Indices

In this section, we describe a number of possible additional
index types along with concrete similarity measures where
applicable. This is performed to determine whether the indexing
of a particular type of data is feasible in the context of our
S4 concept. If a concrete similarity measure can be given, we
consider the specific dimension to be fitting for the generation
of indices within our concept.

1) String-based: Text strings can be mapped to a numeric
value using an arbitrary hash function. For example, the SHA1
hashing function [21] produces hashes with the length of 160
bits. To generate an cluster key ck from a string s using SHA1,
the following formula may be used:

ck := SHA1(s)/2160

If range queries are to be supported, locality-preserving hash
functions [22] can be employed. In this case, a length limit for
the relevant parts of the string to be hashed has to be instated.

2) Temporal: To create an index supporting the retrieval of
tuples according to temporal constraints, the similarity measure
has to map the time to be indexed to a different interval. In
order to perform this, minimum and maximum values for the
source interval have to be defined. If we assume temporal
information to be given as timestamps t, and we define tmin to
be the minimum and tmax as the maximum value for indexed
temporal data, the following similarity measure may be used:

ck :=
t− tmin

tmax

3) Spatial: If we assume spatial information is not defined
as a hierarchy of places, but rather as a numerical representation
in a two-dimensional coordinate system (e.g. partial WGS84-
Coordinates [23]), the definition of a similarity measure for
spatial indexing is also straightforward. The product of the
coordinate values x and y can simply be normalized to the
interval [0,1].

4) Semantic: If the storage system is used to process
semantic information (e.g. RDF triples annotated using OWL
ontologies), similarity calculation is more complex. The pres-
ence of semantic annotations would enable sub-class matching
for queries. For example, the tuples (brian, is-a, dog) and (dog,
is-a, mammal) can be used to derive the fact that the entity
“brian” is an instance of the concept “mammal”. An application
could now present the query for all “mammals”, which – due
to the information inherent in the stored tuples – would also
apply to the entity “brian”. In order to create and query an
index for this kind of information, the similarity measure needs
both the instance and the ontology information to be present.
Tolksdorf et al. have presented such an approach, however, at
least parts of the ontology information have to be carried with
the retrieval operations [17]. Therefore, this indexing is more
costly than the previous ones and benefits have to be weighted
against the costs more carefully. A different approach to this
issue is to materialize all implicit information during periodic
operations, which has been proposed by Obermeier et al. [24].

V. EXPERIMENTAL RESULTS

We have performed a number of experiments to determine the
impact the generation of routing indices has on the performance
and behavior of our S4 system. We have measured the write
time as well as the amount of stored elements for each node
for different network sizes and different index configurations.
Network sizes ranged from 10 to 150 nodes, and one, two
and three string indices were configured on each node for
the different test runs. From our theoretical observations we
expect increasing write time and element count for additional
indices. For larger network sizes with a constant amount of
stored triples, write time is expected to increase modestly, while
element counts per node are reduced.

We have implemented the aforementioned concepts of the
S4 system and its practical enhancements such as clustered
similarity values using the Java programming language as a
stand-alone system. This implementation was deployed onto
our test cluster consisting of 150 virtual Linux nodes running
on a single server with eight 2.26 GHz processors and 64 GB
of main memory. For a typical run, a node had on average
11 neighboring nodes. A random subset of the DBpedia
dataset [25] containing 100.000 RDF triples was stored in
the storage network for each test run.

A. Write Time Impact

For each network and index configuration, our DBpedia
subset consisting of 100K triples was written to a single
arbitrary node, on which the operations distributing and
clustering the data inside the network were dispatched. The
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Fig. 1. Write time for storing 100K triples per network size and index configuration

20 40 60 80 100 120 140

1
0

0
0

2
0

0
0

5
0

0
0

2
0

0
0

0

Network size (#)

E
le

m
e

n
ts

 l
o

g
(#

)

l

l

l

l

l

l

l

l
l l

l

l
l

l
l

l

Index configuration

index−1

index−2

index−3

Fig. 2. Average element count after storing 100K triples per network size and index configuration

time required to complete the write operation from the client’s
standpoint was recorded for each run. Figure 1 shows a scatter
plot and LOESS nonparametric regression lines [26] of these
recordings for the different network sizes (horizontal axis) and
the time required (vertical axis). Point styles describe the results
for different index configurations. Significant fluctuations of
the results can be observed, which we consider an effect of
the system-inherent randomness as described in Section III.
However, it is also visible that the tree-fold index (• markers)
generally longer to generate than the two-fold index (N
markers), which in turn took longer than the one-fold index
(� markers). Also, no exponential behavior is observable, we
therefore assume sufficient scalability of our indexing method
for additional indices and nodes.

B. Element Overhead

Since the generation of additional routing indices (or
pheromone trails) leads to additional copies of the stored
elements to be written to single nodes, we have measured the
average number of elements stored on the nodes for different
network sizes and index configurations. These measurements

are given in Figure 2. As expected in the previous chapter, the
average number of elements stored on each node for different
network sizes increases linearly.

VI. CONCLUSIONS AND FUTURE WORK

After introducing how indices are used to help operation ex-
ecution for any system storing bulk data, we have described the
need for distributed storage to overcome scalability limitations.
By differentiating between central and distributed indices in
their system settings, the need for distributed indices became
apparent. We compared the distributed indices proposed by
other researchers, especially “routing indices” with their various
levels of granularity.

The main focus of this paper was the question whether
multiple levels of routing indices can be maintained and used in
a distributed, swarm-based, and self-organized storage service.
Each index can be used to efficiently answer a distinct set of
queries within the system, and support for multiple indices
thus enhances the overall usefulness of our system.

Our swarm-based self-organized approach to distributed
storage (“S4”) was introduced along with its comparable



concept of indexing and routing paradigm. The conceptual
requirements to create a usable routing index within our system
were described, and from there various different types of
indices to support a wide range of queries were examined.
Our theoretical examination showed the general feasibility and
theoretical effort to build multi-leveled indexing in this specific
class of systems, and also showed the advantages of indices
not relying on additional information.

We have then performed an evaluation using experiments on
our test cluster consisting of 150 virtual machines and our S4
implementation. Evaluation showed the expected behaviour
from our self-organized system, where additional indices
represented a linear overhead. This is consistent with our
expectations, and we thus are inclined to answer our research
question positively. This paper has contributed an theoretical
insight into the feasible type of indices in this class of
distributed systems as well as an evaluation of their overhead.

A. Future Work

For our future work, we would like to implement the
mentioned index variants in a scalable, self-organized way.
A flexible and distributed configuration mechanism for the
indices is also necessary, as all nodes in a storage network
should have a compatible understanding of the configured
index structures. We have shown how indices operating on
similar data can share a routing index structure, but it could
be feasible to also integrate heterogeneous data into the same
index structure. Also, the movement of elements in the system
with the goal of reducing the routing indices’ size could also
be a promising approach to achieve index compression.

Query processing is also a very interesting topic in this area,
we shall investigate how queries which have to make use of
more than one of these indices could be evaluated efficiently.
Classical query optimization for distributed systems use a cost
model and cardinality statistics for query optimization [6].
It may be possible to achieve a similar efficiency in a self-
organized system. For evaluation purposes we are planning to
extend our testbed network to larger storage networks, possibly
exceeding 1000 “real” participating nodes for our experiments.
Experiments using more than three configured indices are also a
target for further work as well as retrieval experiments, which
show the advantage gained by additional indices weighted
against the effort of building them.
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