
Don’t Hold My Data Hostage –
A Case For Client Protocol Redesign

Mark Raasveldt
Centrum Wiskunde & Informatica

Amsterdam, The Netherlands
m.raasveldt@cwi.nl

Hannes Mühleisen
Centrum Wiskunde & Informatica

Amsterdam, The Netherlands
hannes@cwi.nl

ABSTRACT
Transferring a large amount of data from a database to a
client program is a surprisingly expensive operation. The
time this requires can easily dominate the query execution
time for large result sets. This represents a significant hurdle
for external data analysis, for example when using statistical
software. In this paper, we explore and analyse the result set
serialization design space. We present experimental results
from a large chunk of the database market and show the
inefficiencies of current approaches. We then propose a
columnar serialization method that improves transmission
performance by an order of magnitude.

Keywords
Databases, Client Protocols, Data Export

1. INTRODUCTION
Transferring a large amount of data out of a database sys-

tem to a client program is a common task. Examples include
complex statistical analysis or machine learning applications
that need access to large samples for model construction
or verification. However, that operation is expensive. It is
even more costly if the data is transported over a network
connection, which is necessary if the database server runs on
a separate machine or in the cloud.

Result set serialization (RSS) has a significant impact on
overall system performance. Figure 1 shows the time taken
to run the SQL query “SELECT * FROM lineitem” using an
ODBC connector and then fetching the results for various
data management systems. We see large differences between
systems and disappointing performance overall. Modern data
management systems need a significant amount of time to
transfer a modest amount of data from the server to the
client, even when they are located on the same machine.

From a survey of popular machine learning tools, we have
found that none of them integrate into database systems
beyond the bulk transfer of data sets. RapidMiner [18] and
Weka [16] allow analyzing data from a database connection,

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 10, No. 10
Copyright 2017 VLDB Endowment 2150-8097/17/06.

Netcat (10.25s)

170.9170.9170.9

189.6189.6189.6

629.9629.9629.9

221.2221.2221.2

686.5686.5686.5

101.3101.3101.3

391.3391.3391.3

202202202

MongoDB

Hive

MySQL+C

MonetDB

PostgreSQL

DBMS X

DB2

MySQL

0 200 400 600
Wall clock time (s)

Operation
Connection
Query Execution
RSS + Transfer

Figure 1: Wall clock time for retrieving the lineitem

table (SF10) over a loopback connection. The
dashed line is the wall clock time for netcat to trans-
fer a CSV of the data.

but this is strictly limited to loading. The users must issue
their own queries to load the data from the database. This
will likely be a query such as the one above. None of R’s
machine learning packages [19] use a database interface or
import a package that does. Instead, they again rely on the
user to provide them with data in a table that is already
loaded into memory. The same is true for Python-based
toolkits like SciKit-Learn [26] or TensorFlow [2].

Because of the large cost of data export, analysts settle
for exporting small samples from the database. This way,
data export is not a bottleneck in their analysis pipelines.
However, this generally reduces the accuracy of machine
learning and classification algorithms.

The issue of slow result export has been identified before.
A large amount of previous work focuses on avoiding data
export by performing the computations in the database
instead of exporting the data [30]. However, these solutions
require large, system-specific, overhauls of existing pipelines
and are difficult to implement and optimize. There is little to
no scientific work done on improving result set serialization.

In this paper, we perform a rigorous examination on the
design of existing serialization formats. We analyse how
they perform when transferring various data sets in different
network scenarios, and examine why they show this perfor-
mance. We explore the design space of serialization formats
with experiments, and look at the different trade-offs that
are made when designing a client protocol.



The main contributions of this paper are:

• We benchmark the result set serialization methods
used by major database systems, and measure how
they perform when transferring large amounts of data
in different network environments. We explain how
these methods perform result set serialization, and
discuss the deficiencies of their designs that make them
inefficient for transfer of large amounts of data.

• We explore the design space of result set serialization
and investigate numerous techniques that can be used
to create an efficient serialization method. We exten-
sively benchmark these techniques and discuss their
advantages and disadvantages.

• We propose a new column-based serialization method
that is suitable for exporting large result sets. We
implement our method in the Open-Source database
systems PostgreSQL and MonetDB, and demonstrate
that it performs an order of magnitude better than the
state of the art. Both implementations are available as
Open Source software.

Outline. This paper is organized as follows. In Section
2, we perform a comprehensive analysis of state of the art
in client protocols. In Section 3, we analyze techniques that
can be used to improve on the state of the art. In Section 4,
we describe the implementation of our protocol and perform
an evaluation. In Section 5, we draw our conclusions and
discuss future work.

2. STATE OF THE ART
Every database system that supports remote clients imple-

ments a client protocol. Using this protocol, the client can
send queries to the database server, to which the server will
respond with a query result. A typical communication sce-
nario between a server and client is shown in Figure 2. The
communication starts with authentication, followed by the
client and server exchanging meta information (e.g. protocol
version, database name). Following this initial handshake,
the client can send queries to the server. After computing
the result of a query, (1) the server has to serialize the data
to the result set format, (2) the converted message has to be
sent over the socket to the client, and (3) the client has to
deserialize the result set so it can use the actual data.

The design of the result set determines how much time is
spent on each step. If the protocol uses heavy compression,
the result set (de)serialization is expensive, but time is saved
sending the data. On the other hand, a simpler client protocol
sends more bytes over the socket but can save on serialization
costs. The serialization format can heavily influence the time
it takes for a client to receive the results of a query. In this
section, we will take an in-depth look at the serialization
formats used by state of the art systems, and measure how
they perform when transferring large amounts of data.

2.1 Overview
To determine how state of the art databases perform at

large result set export, we have experimented with a wide
range of systems: The row-based RDBMS MySQL [36],
PostgreSQL [32], the commercial systems IBM DB2 [37]
and “DBMS X”. We also included the columnar RDBMS
MonetDB [5] and the non-traditional systems Hive [33] and

Figure 2: Communication between a client and a
server

MongoDB [23]. MySQL offers an option to compress the
client protocol using GZIP (“MySQL+C”), this is reported
separately.

There is considerable overlap in the use of client protocols.
In order to be able to re-use existing client implementations,
many systems implement the client protocol of more popular
systems. Redshift [15], Greenplum [9], Vertica [20] and
HyPer [24] all implement PostgreSQL’s client protocol. Spark
SQL [3] uses Hive’s protocol. Overall, we argue that this
selection of systems includes a large part of the database
client protocol variety.

Each of these systems offers several client connectors. They
ship with a native client program, e.g. the psql program
for PostgreSQL. This client program typically only supports
querying the database and printing the results to a screen.
This is useful for creating a database and querying its state,
however, it does not allow the user to easily use the data in
their own analysis pipelines.

For this purpose, there are database connection APIs that
allow the user to query a database from within their own
programs. The most well known of these are the ODBC [11]
and JDBC [8] APIs. As we are mainly concerned with the
export of large amounts of data for analysis purposes, we
only consider the time it takes for the client program to
receive the results of a query.

To isolate the costs of result set (de)serialization and data
transfer from the other operations performed by the database
we use the ODBC client connectors for each of the databases.
For Hive, we use the JDBC client because there is no of-
ficial ODBC client connector. We isolate the cost of con-
nection and authentication by measuring the cost of the
SQLDriverConnect function. The query execution time can
be isolated by executing the query using SQLExecDirect with-
out fetching any rows. The cost of result set (de)serialization
and transfer can be measured by fetching the entire result
using SQLFetch.

As a baseline experiment of how efficient state of the art
protocols are at transferring large amounts of data, we have
loaded the lineitem table of the TPC-H benchmark [34]
of SF10 into each of the aforementioned data management
systems. We retrieved the entire table using the ODBC
connector, and isolated the different operations that are
performed when such a query is executed. We recorded the
wall clock time and number of bytes transferred that were
required to retrieve data from those systems. Both the server



and the client ran on the same machine. All the reported
timings were measured after a “warm-up run” in which we
run the same query once without measuring the time.

As a baseline, we transfer the same data in CSV format
over a socket using the netcat (nc) [12] utility. The baseline
incorporates the base costs required for transferring data to
a client without any database-specific overheads.

Figure 1 shows the wall clock time it takes for each of the
different operations performed by the systems. We observe
that the dominant cost of this query is the cost of result
set (de)serialization and transferring the data. The time
spent connecting to the database and executing the query is
insignificant compared to the cost of these operations.

The isolated cost of result set (de)serialization and transfer
is shown in Table 1. Even when we isolate this operation,
none of the systems come close to the performance of our
baseline. Transferring a CSV file over a socket is an order of
magnitude faster than exporting the same amount of data
from any of the measured systems.

Table 1: Time taken for result set (de)serialization +
transfer when transferring the SF10 lineitem table.

System Time (s) Size (GB)
(Netcat) (10.25) (7.19)
MySQL 101.22 7.44
DB2 169.48 7.33
DBMS X 189.50 6.35
PostgreSQL 201.89 10.39
MonetDB 209.02 8.97
MySQL+C 391.27 2.85
Hive 627.75 8.69
MongoDB 686.45 43.6

Table 1 also shows the number of bytes transferred over
the loopback network device for this experiment. We can see
that the compressed version of the MySQL client protocol
transferred the least amount of data, whereas MongoDB
requires transferring ca. six times the CSV size. MongoDB
suffers from its document-based data model, where each
document can have an arbitrary schema. Despite attempting
to improve performance by using a binary version of JSON
(“BSON” [23]), each result set entry contains all field names,
which leads to the large overhead observed.

We note that most systems with an uncompressed protocol
transfer more data than the CSV file, but not an order of
magnitude more. As this experiment was run with both the
server and client residing on the same machine, sending data
is not the main bottleneck in this scenario. Instead, most
time is spent (de)serializing the result set.

2.2 Network Impact
In the previous experiment, we considered the scenario

where both the server and the client reside on the same
machine. In this scenario, the data is not actually transferred
over a network connection, meaning the transfer time is not
influenced by latency or bandwidth limitations. As a result
of the cheap data transfer, we found that the transfer time
was not a significant bottleneck for the systems and that
most time was spent (de)serializing the result set.

Network restrictions can significantly influence how the
different client protocols perform, however. Low bandwidth
means that transferring bytes becomes more costly; which

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

● ●

●

●

● ● ●

●● ● ● ●

● ●

●

●

DB2
DBMS X

Hive

MonetDB
MongoDB

MySQL
MySQL+C

PostgreSQL

10

100

0.1 1.0 10.0 100.0
Latency (ms, log)

W
al

l c
lo

ck
 ti

m
e 

(s
, l

og
)

Figure 3: Time taken to transfer a result set with
varying latency.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

DB2

DBMS X

Hive

MonetDB

MongoDB

MySQL

MySQL+C

PostgreSQL
10

100

10 100 1000
Throughput (Mb/s, log)

W
al

l c
lo

ck
 ti

m
e 

(s
, l

og
)

Figure 4: Time taken to transfer a result set with
varying throughput limitations.

means compression and smaller protocols are more effec-
tive. Meanwhile, a higher latency means round trips to send
confirmation packets becomes more expensive.

To simulate a limited network connection, we use the Linux
utility netem [17]. This utility allows us to simulate network
connections with limitations both in terms of bandwidth and
latency. To test the effects of a limited network connection
on the different protocols, we transfer 1 million rows of the
lineitem table but with either limited latency or limited
bandwidth.

Latency. An increase in latency adds a fixed cost to send-
ing messages, regardless of the message size. High latency is
particularly problematic when either the client or the server
has to receive a message before it can proceed. This occurs
during authentication, for example. The server sends a chal-
lenge to the client and then has to wait a full round-trip
before receiving the response.

When transferring large result sets, however, such hand-
shakes are unnecessary. While we expect a higher latency to
significantly influence the time it takes to establish a connec-
tion, the transfer of a large result set should not be influenced
by the latency as the server can send the entire result set
without needing to wait for any confirmation. As we filter
out startup costs to isolate the result set transfer, we do not
expect that a higher latency will significantly influence the
time it takes to transfer a result set.

In Figure 3, we see the influence that higher latencies have
on the different protocols. We also observe that both DB2
and DBMS X perform significantly worse when the latency is



increased. It is possible that they send explicit confirmation
messages from the client to the server to indicate that the
client is ready to receive the next batch of data. These
messages are cheap with a low latency, but become very
costly when the latency increases.

Contrary to our prediction, we find that the performance
of all systems is heavily influenced by a high latency. This is
because, while the server and client do not explicitly send
confirmation messages to each other, the underlying TCP/IP
layer does send acknowledgement messages when data is
received [27]. TCP packets are sent once the underlying
buffer fills up, resulting in an acknowledgement message.
As a result, protocols that send more data trigger more
acknowledgements and suffer more from a higher latency.

Throughput. Reducing the throughput of a connection
adds a variable cost to sending messages depending on the
size of the message. Restricted throughput means sending
more bytes over the socket becomes more expensive. The
more we restrict the throughput, the more protocols that
send a lot of data are penalized.

In Figure 4, we can see the influence that lower throughputs
have on the different protocols. When the bandwidth is
reduced, protocols that send a lot of data start performing
worse than protocols that send a lower amount of data.
While the PostgreSQL protocol performs well with a high
throughput, it starts performing significantly worse than the
other protocols with a lower throughput. Meanwhile, we also
observe that when the throughput decreases compression
becomes more effective. When the throughput is low, the
actual data transfer is the main bottleneck and the cost of
(de)compressing the data becomes less significant.

2.3 Result Set Serialization
In order to better understand the differences in time and

transferred bytes between the different protocols, we have
investigated their data serialization formats.

Table 2: Simple result set table.

INT32 VARCHAR10

100,000,000 OK
NULL DPFKG

For each of the protocols, we show a hexadecimal repre-
sentation of Table 2 encoded with each result set format.
The bytes used for the actual data are colored green, while
any overhead is colored white. For clarity, leading zeroes are
colored gray.

4450464B4705000000FFFFFFFF

44 020010000000 4F4B0200000000E1F50500000004

44 02000F000000

T
o
ta
l

L
en
g
th

F
ie
ld

C
o
u
n
t

L
en
g
th

F
ie
ld

1

D
a
ta

F
ie
ld

1

D
a
ta

F
ie
ld

2

L
en
g
th

F
ie
ld

2

M
es
sa
g
e

T
y
p
e

Figure 5: PostgreSQL result set wire format

PostgreSQL. Figure 5 shows the result set serialization
of the widely used PostgreSQL protocol. In the PostgreSQL
result set, every single row is transferred in a separate pro-
tocol message [35]. Each row includes a total length, the

amount of fields, and for each field its length (−1 if the value
is NULL) followed by the data. We can see that for this result
set, the amount of per-row metadata is greater than the
actual data w.r.t. the amount of bytes. Furthermore, a lot
of information is repetitive and redundant. For example,
the amount of fields is expected to be constant for an entire
result set. Also, from the result set header that precedes
those messages, the amount of rows in the result set is known,
which makes the message type marker redundant. This large
amount of redundant information explains why PostgreSQL’s
client protocol requires so many bytes to transfer the result
set in the experiment shown in Table 1. On the other hand,
the simplicity of the protocol results in low serialization and
deserialization costs. This is reflected in its quick transfer
time if the network connection is not a bottleneck.

4450464B47

4F4B00

0500

04

05

D
a
ta

F
ie
ld

2

D
a
ta

L
en
g
th

P
a
ck
et

N
r.

D
a
ta

F
ie
ld

1

L
en
g
th

F
ie
ld

2

0D00

0700

313030303030303002

FB

09

L
en
g
th

F
ie
ld

2

L
en
g
th

F
ie
ld

1

Figure 6: MySQL text result set wire format

MySQL. Figure 6 shows MySQL/MariaDB’s protocol
encoding of the sample result set. The protocol uses binary
encoding for metadata, and text for actual field data. The
number of fields in a row is constant and defined in the result
set header. Each row starts with a three-byte data length.
Then, a packet sequence number (0-256, wrapping around)
is sent. This is followed by length-prefixed field data. Field
lengths are encoded as variable-length integers. NULL values
are encoded with a special field length, 0xFB. Field data
is transferred in ASCII format. The sequence number is
redundant here as the underlying TCP/Unix Sockets already
guarantees that packets arrive in the same order in which
they were sent.

07

L
en
g
th

F
ie
ld

1

00

L
en
g
th

F
ie
ld

2

4450464B47

02

D
a
ta

F
ie
ld

2

D
a
ta

F
ie
ld

1

0702 4F4B

05

C502

P
a
ck
et

H
ea
d
er

Figure 7: DBMS X result set wire format

DBMS X has a very terse protocol. However, it is much
more computationally heavy than the protocol used by Post-
greSQL. Each row is prefixed by a packet header, followed
by the values. Every value is prefixed by its length in bytes.
This length, however, is transferred as a variable-length inte-
ger. As a result, the length-field is only a single byte for small
lengths. For NULL values, the length field is 0 and no actual
value is transferred. Numeric values are also encoded using
a custom format. On a lower layer, DBMS X uses a fixed
network message length for batch transfers. This message
length is configurable and according to the documentation,
considerably influences performance. We have set it to the
largest allowed value, which gave the best performance in
our experiments.



5B20

4450464B475B204E55 2C09 095D0A

3130303030303030302C094F4B 095D0A

L
in
e

T
y
p
e

D
a
ta

F
ie
ld

1

F
ie
ld

D
el
im

it
er

L
in
e

E
n
d

D
a
ta

F
ie
ld

2

4C4C

Figure 8: MonetDB result set wire format

MonetDB. Figure 8 shows MonetDB’s text-based result
serialization format. Here, the ASCII representations of
values are transferred. This side-steps some issues with
endian-ness, transfer of leading zeroes and variable-length
strings. Again, every result set row is preceded by a message
type. Values are delimited similar to CSV files. A newline
character terminates the result row. Missing values are
encoded as the string literal NULL. In addition (for historic
reasons), the result set format includes formatting characters
(tabs and spaces), which serve no purpose here but inflate the
size of the encoded result set. While it is simple, converting
the internally used binary value representations to strings
and back is an expensive operation.

1A

F
ie
ld

B
eg
in

00000000000000003F

F
ie
ld

B
eg
in

1F

F
ie
ld

B
eg
in

28

L
is
t
B
eg
in

00

F
ie
ld

S
to
p

5FAF8480 1F

F
ie
ld

B
eg
in

2B

L
is
t
B
eg
in

054450464B47024F4B 00

F
ie
ld

S
to
p

00

F
ie
ld

S
to
p

0000000200

F
ie
ld

S
to
p

58

F
ie
ld

B
eg
in

S
ta
rt

R
o
w

O
ff
se
t

C
o
lu
m
n

C
o
u
n
t

D
a
ta

C
o
lu
m
n
1

D
a
ta

C
o
lu
m
n
2

18

F
ie
ld

B
eg
in

0001

N
U
L
L

M
a
sk

F
ie
ld

L
en
g
th

0200

F
ie
ld

S
to
p

00

Figure 9: Hive result set wire format using “com-
pact” Thrift encoding

Hive. Hive and Spark SQL use a Thrift-based protocol to
transfer result sets [28]. Figure 9 shows the serialization of the
example result set. From Hive version 2 onwards, a columnar
result set format is used. Thrift contains a serialization
method for generic complex structured messages. Due to
this, serialized messages contain various meta data bytes to
allow reassembly of the structured message on the client side.
This is visible in the encoded result set. Field markers are
encoded as a single byte if possible, the same holds for list
markers which also include a length.

This result set serialization format is unnecessarily verbose.
However, due to the columnar nature of the format, these
overheads are not dependent on the number of rows in the
result set. The only per-value overheads are the lengths
of the string values and the NULL mask. The NULL mask is
encoded as one byte per value, wasting a significant amount
of space.

Despite the columnar result set format, Hive performs very
poorly on our benchmark. This is likely due to the relatively
expensive variable-length encoding of each individual value
in integer columns.

3. PROTOCOL DESIGN SPACE
In this section, we will investigate several trade-offs that

must be considered when designing a result set serialization
format. The protocol design space is generally a trade-off
between computation and transfer cost. If computation is not
an issue, heavy-weight compression methods such as XZ [31]
are able to considerably reduce the transfer cost. If transfer
cost is not an issue (for example when running a client on
the same machine as the database server) performing less
computation at the expense of transferring more data can
considerably speed up the protocol.

In the previous section, we have seen a large number of
different design choices, which we will explore here. To test
how each of these choices influence the performance of the
serialization format, we benchmark them in isolation. We
measure the wall clock time of result set (de)serialization and
transfer and the size of the transferred data. We perform
these benchmarks on three datasets.

• lineitem from the TPC-H benchmark. This table is
designed to be similar to real-world data warehouse
fact tables. It contains 16 columns, with the types
of either INTEGER, DECIMAL, DATE and VARCHAR. This
dataset contains no missing values. We use the SF10
lineitem table, which has 60 million rows and is 7.2GB
in CSV format.

• American Community Survey (ACS) [6]. This
dataset contains millions of census survey responses.
It consists of 274 columns, with the majority of type
INTEGER. 16.1% of the fields contain missing values.
The dataset has 9.1 million rows, totaling 7.0GB in
CSV format.

• Airline On-Time Statistics [25]. The dataset de-
scribes commercial air traffic punctuality. The most
frequent types in the 109 columns are DECIMAL and
VARCHAR. 55.2% of the fields contain missing values.
This dataset has 10 million rows, totaling 3.6GB in
CSV format.

3.1 Protocol Design Choices
Row/Column-wise. As with storing tabular data on se-
quential storage media, there is also a choice between sending
values belonging to a single row first versus sending values be-
longing to a particular column first. In the previous section,
we have seen that most systems use a row-wise serialization
format regardless of their internal storage layout. This is
likely because predominant database APIs such as ODBC
and JDBC focus heavily on row-wise access, which is simpler
to support if the data is serialized in a row-wise format as
well. Database clients that print results to a console do so
in a row-wise fashion as well.

Yet we expect that column-major formats will have advan-
tages when transferring large result sets, as data stored in
a column-wise format compresses significantly better than
data stored in a row-wise format [1]. Furthermore, popular
data analysis systems such as the R environment for statisti-
cal computing [29] or the Pandas Python package [22] also
internally store data in a column-major format. If data to
be analysed with these or similar environments is retrieved
from a modern columnar or vectorised database using a tra-
ditional row-based socket protocol, the data is first converted



to row-major format and then back again. This overhead is
unnecessary and can be avoided.

The problem with a pure column-major format is that
an entire column is transferred before the next column is
sent. If a client then wants to provide access to the data in
a row-wise manner, it first has to read and cache the entire
result set. For large result sets, this can be infeasible.

Our chosen compromise between these two formats is
a vector-based protocol, where chunks of rows are encoded
in column-major format. To provide row-wise access, the
client then only needs to cache the rows of a single chunk,
rather than the entire result set. As the chunks are encoded
in column-major order, we can still take advantage of the
compression and performance gains of a columnar data rep-
resentation. This trade-off is similar to the one taken in
vector-based systems such as VectorWise [4].

Table 3: Transferring each of the datasets with dif-
ferent chunk sizes.

Chunksize Rows Time Size (GB) C. Ratio

L
in

ei
te

m

2KB 1.4×101 55.9 6.56 1.38
10KB 7.1×101 15.2 5.92 1.80

100KB 7.1×102 10.9 5.81 2.12
1MB 7.1×103 10.0 5.80 2.25

10MB 7.1×104 10.9 5.80 2.26
100MB 7.1×105 13.3 6.15 2.23

A
C

S

2KB 1.0×100 281.1 11.36 2.06
10KB 8.0×100 46.7 9.72 3.18

100KB 8.5×101 16.2 9.50 3.68
1MB 8.5×102 11.9 9.49 3.81

10MB 8.5×103 15.3 9.50 3.86
100MB 8.5×104 17.9 10.05 3.84

O
n
ti

m
e

2KB 1.0×100 162.9 8.70 2.13
10KB 8.0×100 27.3 4.10 4.15

100KB 8.5×101 7.6 3.47 8.15
1MB 8.6×102 6.9 3.42 9.80

10MB 8.6×103 6.2 3.42 10.24
100MB 8.6×104 11.9 3.60 10.84

Chunk Size. When sending data in chunks, we have to
determine how large these chunks will be. Using a larger
chunk size means both the server and the client need to
allocate more memory in their buffer, hence we prefer smaller
chunk sizes. However, if we make the chunks too small, we
do not gain any of the benefits of a columnar protocol as
only a small number of rows can fit within a chunk.

To determine the effect that larger chunk sizes have on
the wall clock time and compression ratio we experimented
with various different chunk sizes using the three different
datasets. We sent all the data from each dataset with both
the uncompressed columnar protocol, and the columnar pro-
tocol compressed with the lightweight compression method
Snappy [14]. We varied the chunk size between 2KB and
100MB. The minimum of 2KB was chosen so a single row of
each dataset can fit within a chunk. We measure the total
amount of bytes that were transferred, the wall clock time
required and the obtained compression ratio.

In Table 3 we can see the results of this experiment. For
each dataset, the protocol performs poorly when the chunk
size is very small. In the worst case, only a single row can fit
within each chunk. In this scenario, our protocol is similar

to a row-based protocol. We also observe that the protocol
has to transfer more data and obtains a poor compression
ratio when the chunk size is low.

However, we can see that both the performance and the
compression ratio converge relatively quickly. For all three
datasets, the performance is optimal when the chunk size
is around 1MB. This means that the client does not need
a large amount of memory to get good performance with a
vector-based serialization format.
Data Compression. If network throughput is limited,
compressing the data that is sent can greatly improve perfor-
mance. However, data compression comes at a cost. There
are various generic, data-agnostic compression utilities that
each make different trade-offs in terms of the (de)compression
costs versus the achieved compression ratio. The lightweight
compression tools Snappy [14] and LZ4 [7] focus on fast
compression and sacrifice compression ratio. XZ [31], on
the other hand, compresses data very slowly but achieves
very tight compression. GZIP [10] obtains a balance between
the two, achieving a good compression ratio while not being
extremely slow.

To test each of these compression methods, we have gener-
ated both a column-major and a row-major protocol message
containing the data of one million rows of the lineitem table.
All the data is stored in binary format, with dates stored as
four-byte integers resembling the amount of days since 0 AD
and strings stored as null delimited values.

Table 4: Compression ratio of row/column-wise bi-
nary files

Method Size (MB) C. Ratio
LZ4 Column 50.0 2.10

Row 57.0 1.85
Snappy Column 47.8 2.20

Row 54.8 1.92
GZIP Column 32.4 3.24

Row 38.1 2.76
XZ Column 23.7 4.44

Row 28.1 3.74

Table 4 shows the compression ratios on both the row-wise
and the column-wise binary files. We can see that even
when using generic, data-agnostic compression methods the
column-wise files always compress significantly better. As
expected, the heavyweight compression tools achieve a better
compression ratio than their lightweight counterparts.

However, compression ratio does not tell the whole story
when it comes to stream compression. There is a trade-
off between heavier compression methods that take longer
to compress the data while transferring fewer bytes and
more lightweight compression methods that have a worse
compression ratio but (de)compress data significantly faster.
The best compression method depends on how expensive it is
to transfer bytes; on a fast network connection a lightweight
compression method performs better because transferring
additional bytes is cheap. On a slower network connection,
however, spending additional time on computation to obtain
a better compression ratio is more worthwhile.

To determine which compression method performs better
at which network speed, we have run a benchmark where we
transfer the SF10 lineitem table over a network connection
with different throughput limitations.



Table 5: Compression effectiveness vs. cost

Timings (s)
Comp Tlocal T1000 T100 T10 Size (MB)

L
in

ei
te

m

None 1.5 10.4 84.8 848 1012
Snappy 3.3 3.8 37.3 373 447
LZ4 4.5 4.9 38.4 383 456
GZIP 59.8 60.4 59.6 226 272
XZ 695 689 666 649 203

The results of this experiment are shown in Table 5.
We can see that not compressing the data performs best
when the server and client are located on the same ma-
chine. Lightweight compression becomes worthwhile when
the server and client are using a gigabit or worse connection
(1 Gbit/s). In this scenario, the uncompressed protocol still
performs better than heavyweight compression techniques.
It is only when we move to a very slow network connection
(10Mbit/s) that heavier compression performs better than
lightweight compression. Even in this case, however, the very
heavy XZ still performs poorly because it takes too long to
compress/decompress the data.

The results of this experiment indicate that the best com-
pression method depends entirely on the connection speed
between the server and the client. Forcing manual configura-
tion for different setups is a possibility but is cumbersome
for the user. Instead, we choose to use a simple heuristic for
determining which compression method to use. If the server
and client reside on the same machine, we do not use any
compression. Otherwise, we use lightweight compression, as
this performs the best in most realistic network use cases
where the user has either a LAN connection or a reasonably
high speed network connection to the server.
Column-Specific Compression. Besides generic compres-
sion methods, it is also possible to compress individual
columns. For example, run-length encoding or delta en-
coding could be used on numeric columns. The database
also could have statistics on a column which would allow
for additional optimizations in column compression. For ex-
ample, with min/max indexes we could select a bit packing
length for a specific column without having to scan it.

Using these specialized compression algorithms we could
achieve a higher compression ratio at a lower cost than when
using data-agnostic compression algorithms. Integer values
in particular can be compressed at a very high speed using
vectorized binpacking or PFOR [21] compression algorithms.

To investigate the performance of these specialized integer
compression algorithms, we have performed an experiment
in which we transfer only the integer columns of the three
different datasets. The reason we transfer only the integer
columns is because these compression methods are specifically
designed to compress integers, and we want to isolate their
effectiveness on these column types. The lineitem table has
8 integer columns, the ACS dataset has 265 integer columns
and the ontime dataset has 17 integer columns.

For the experiment, we perform a projection of only the
integer columns in these datasets and transfer the result of
the projection to the client. We test both the specialized
compression methods PFOR and binpacking, and the generic
compression method Snappy. The PFOR and binpacking
compression methods compress the columns individually,
whereas Snappy compresses the entire message at once. We

test each of these configurations on different network configu-
rations, and measure the wall clock time and bytes transferred
over the socket.

Table 6: Cost for retrieving the int columns using
different compression methods.

Timings (s)
System TLocal TLAN TWAN Size (MB)

L
in

ei
te

m

None 5.3 15.7 159.0 1844.2
Binpack 6.0 8.0 82.0 944.1
PFOR 5.7 8.1 82.1 948.0
Snappy 6.8 12.3 103.9 1204.9
Binpack+Sy 5.8 7.5 76.4 882.0
PFOR+Sy 5.7 7.5 77.5 885.9

A
C

S

None 15.2 78.6 800.6 9244.8
Binpack 120.5 133.9 421.2 4288.2
PFOR 166.8 170.1 300.9 2703.4
Snappy 20.5 22.8 204.5 2434.8
Binpack+Sy 152.6 160.9 190.0 1694.6
PFOR+Sy 165.8 168.4 185.4 1203.2

O
n
ti

m
e

None 1.3 5.8 54.4 649.1
Binpack 1.4 6.2 44.4 529.3
PFOR 1.6 5.8 44.4 528.6
Snappy 1.4 1.4 3.2 39.0
Binpack+Sy 1.8 1.9 5.7 67.7
PFOR+Sy 1.8 1.9 5.9 70.5

In Table 6, the results of this experiment are shown. For
the lineitem table, we see that both PFOR and binpacking
achieve a higher compression ratio than Snappy at a lower
performance cost. As a result, these specialized compres-
sion algorithms perform better than Snappy in all scenarios.
Combining the specialized compression methods with Snappy
allows us to achieve an even higher compression ratio. We
still note that not compressing performs better in the local-
host scenario, however.

When transferring the ACS dataset the column-specific
compression methods perform significantly worse than Snappy.
Because a large amount of integer columns are being trans-
ferred (265 columns) each chunk we transfer contains rela-
tively few rows. As a result, the column-specific compression
methods are called many times on small chunks of data,
which causes poor performance. Snappy is unaffected by
this because it does not operate on individual columns, but
compresses the entire message instead.

We observe that the PFOR compression algorithm per-
forms significantly better than binpacking on the ACS data.
This is because binpacking only achieves a good compression
ratio on data with many small values, whereas PFOR can
efficiently compress columns with many large numbers as
long as the values are close together.

Both specialized compression algorithms perform very
poorly on the ontime dataset. This dataset has both large
values, and a large difference between the minimum and
maximum values. However, Snappy does obtain a very good
compression ratio. This is because values that are close
together are similar, making the dataset very compressible.

Overall, we can see that the specialized compression algo-
rithms we have tested can perform better than Snappy on
certain datasets. However, they do not perform well on all
data distributions and they require each message to contain
many rows to be effective. As a result, we have chosen not



to use column-specific compression algorithms. As future
work it would be possible to increase protocol performance
by choosing to use these specialized compression algorithms
based on database statistics.
Data Serialization. The sequential nature of the TCP
sockets requires an organized method to write and read data
from them. Options include custom text/binary serializations
or generic serialization libraries such as Protocol Buffers [13]
or Thrift [28]. We can expect that the closer the serialized
format is to the native data storage layout, the less the
computational overhead required for their (de)serialization.

To determine the performance impact that generic seri-
alization libraries have when serializing large packages, we
perform an experiment in which we transfer the lineitem

table using both a custom serialization format and proto-
col buffers. For both scenarios, we test an uncompressed
protocol and a protocol compressed with Snappy.

Table 7: Cost for transferring data using a custom
serialization format vs protocol buffers.

Timings (s)
System TLocal TLAN TWAN Size (MB)

L
in

ei
te

m Custom 10.3 64.1 498.9 5943.3
Custom+C 18.3 25.4 221.4 2637.4
Protobuf 33.1 45.5 391.6 4656.1
Protobuf+C 35.7 47.3 195.2 2315.9

In Table 7, the results of this experiment are shown. We
can see that our custom result set serialization format per-
forms significantly better than protobuf serialization. This
is because protobuf operates as a generic protocol and does
not consider the context of the client-server communication.
Protobuf will, for example, perform unnecessary endianness
conversions on both the server- and client- side because it
does not know that the server and client use the same en-
dianness. As a result of these unnecessary operations, the
(un)packing of protobuf messages is very expensive.

We do see that protobuf messages are smaller than our
custom format. This is because protobuf messages store
integers as varints, saving space for small integer values.
However, protocol buffers achieve a very small compression
ratio at a very high cost compared to actual compression
algorithms. As a result of these high serialization costs, we
have chosen to use a custom serialization format.
String handling. Character strings are one of the more
difficult cases for serialization. There are three main options
for character transfer.

• Null-Termination, where every string is suffixed with a
0 byte to indicate the end of the string.

• Length-Prefixing, where every string is prefixed with
its length.

• Fixed Width, where every string has a fixed width as
described in its SQL type.

Each of these approaches has a number of advantages and
disadvantages. Strings encoded with length-prefixing need
additional space for the length. This can drastically increase
the size of the protocol message, especially when there are
many small strings. This effect can be mitigated by using
variable-length integers. This way, small strings only require

a single byte for their length. However, variable integers
introduce some additional computation overhead, increasing
(de)serialization time.

Null-Termination only requires a single byte of padding
for each string, however, the byte is always the same value
and is therefore very compressible. The disadvantage of null-
termination is that the client has to scan the entire string to
find out where the next string is. With length-prefixing, the
client can read the length and jump that many bytes ahead.

Fixed-Width has the advantage that there is no unnec-
essary padding if each string has the same size. However,
in the case of VARCHARs, this is not guaranteed. If there
are a small amount of long strings and a large amount of
short (or NULL) strings, fixed-width encoding can introduce
a significant amount of unnecessary padding.

To determine how each of these string representations
perform, we have tested each of these approaches by trans-
ferring different string columns of the lineitem table. For
each experiment, we transfer 60 million rows of the speci-
fied column with both the uncompressed protocol and the
protocol compressed with Snappy.

Table 8: Transferring the l returnflag column of the
SF10 lineitem table.

Type Time Time+C Size(MB) C.Ratio
Varint Prefix 3.94 3.99 114.54 3.37
Null-Terminated 3.95 3.91 114.54 3.37
VARCHAR(1) 3.68 3.76 57.34 2.84

In Table 8, the result of transferring only the single-
character column l returnflag is shown. As expected, we
can see that a fixed-width representation performs extremely
well while transferring a small string column. Both the
length-prefix and null-terminated approaches use an addi-
tional byte per string, causing them to transfer twice the
amount of bytes.

Table 9: Transferring the l comment column of the
SF10 lineitem table.

Type Time Time+C Size(GB) C.Ratio
Null-Terminated 4.12 6.09 1.53 2.44
Varint Prefix 4.24 6.63 1.53 2.27
VARCHAR(44) 4.15 7.66 2.46 3.12
VARCHAR(100) 5.07 10.13 5.59 5.69
VARCHAR(1000) 16.71 26.30 55.90 15.32
VARCHAR(10000) 171.55 216.23 559.01 20.19

In Table 9, the result of transferring the longer column
l comment is shown. This column has a maximum string
length of 44. We can see that all the approaches have compa-
rable performance when transferring this column. However,
the fixed-width approach transfers a significantly higher num-
ber of bytes. This is because many of the strings are not
exactly 44 characters long, and hence have to be padded. As
a result of more data being transferred, the compression is
also more expensive.

To illustrate the effect that this unnecessary padding can
have on performance in the worst case, we have repeated
this experiment with different VARCHAR type widths. We
note that as we increase the width of the VARCHAR type,
the amount of data that the fixed-width approach has to



transfer drastically increases. While the compressibility does
significantly improve with the amount of padding, this does
not sufficiently offset the increased size.

The results of these experiments indicate that the fixed-
width representation is well suited for transferring narrow
string columns, but has a very poor worst-case scenario
when dealing with wider string columns. For this reason, we
have chosen to conservatively use the fixed-width represen-
tation only when transferring columns of type VARCHAR(1).
Even when dealing with VARCHAR columns of size two, the
fixed-width representation can lead to a large increase in
transferred data when many of the strings are empty. For
larger strings, we use the null-termination method because
of its better compressibility.

4. IMPLEMENTATION & RESULTS
In the previous section, we have investigated several trade-

offs that must be considered when designing a protocol. In
this section we will describe the design of our own protocol,
and its implementation in PostgreSQL and MonetDB. After-
wards, we will provide an extensive evaluation comparing the
performance of our protocol with the state of the art client
protocols when transferring large amounts of real-world data.

4.1 MonetDB Implementation
Figure 10 shows the serialization of the data from Table 2

with our proposed protocol in MonetDB. The query result is
serialized to column-major chunks. Each chunk is prefixed
by the amount of rows in that particular chunk. After the
row count, the columns of the result set follow in the same
order as they appear in the result set header. Columns with
fixed-length types, such as four-byte integers, do not have any
additional stored before them. Columns with variable-length
types, such as VARCHAR columns, are prefixed with the total
length of the column in bytes. Using this length, the client
can access the next column in the result set without having
to scan through the variable-length column. This allows the
client to efficiently provide row-wise access to the data.

Missing values are encoded as a special value within the
domain of the type being transferred. For example, the
value 2−31 is used to represent the NULL value for four-byte
integers. This approach is used internally by MonetDB to
store missing values, and is efficient when there are no or
few missing values to be transferred.

02000000 00000080

4450464B47004F4B00

C
o
lu
m
n

D
a
ta

R
o
w

C
o
u
n
t

09000000

00E1F505

C
o
lu
m
n

L
en
g
th

Figure 10: Proposed result set wire format – Mon-
etDB

The maximum size of the chunks is specified in bytes. The
maximum chunk size is set by the client during authentication.
The advantage to this approach is that the size of the chunks
does not depend on the width of the rows. This way, the
client only needs to allocate a single buffer to hold the result
set messages. Chunks will always fit within that buffer
outside of the edge case when there are extremely wide

rows. The client can then read an entire chunk into that
buffer, and directly access the data stored without needing
to unnecessarily convert and/or copy the data.

When the server sends a result set, the server chooses
the amount of rows to send such that the chunk does not
exceed the maximum size. If a single row exceeds this limit,
the server will send a message to the client indicating that
it needs to increase the size of its buffer so a single row
can fit within it. After choosing the amount of rows that
fit within a chunk, the server copies the result into a local
buffer in column-wise order. As MonetDB stores the data in
column-wise order, the data of each of the columns is copied
sequentially into the buffer. If column-specific compression is
enabled for a specific column, the data is compressed directly
into the buffer instead of being copied. After the buffer is
filled, the server sends the chunk to the client. If chunk-wise
compression is enabled, the entire chunk is compressed before
being transferred.

Note that choosing the amount of rows to send is typically
a constant operation. Because we know the maximum size of
each row for most column types, we can compute how many
rows can fit within a single chunk without having to scan the
data. However, if there are BLOB or CLOB columns every
row can have an arbitrary size. In this case, we perform a
scan over the elements of these columns to determine how
many rows we can fit in each chunk. In these cases, the
amount of rows per chunk can vary on a per-chunk basis.

4.2 PostgreSQL Implementation
Figure 11 shows the serialization of the data from Table 2

with our proposed protocol in PostgreSQL. Like the proposed
protocol in MonetDB, the result is serialized to column-major
chunks and prefixed by the amount of rows in that chunk.
However, missing values are encoded differently. Instead of
a special value within the domain, each column is prefixed
with a bitmask that indicates for each value whether or not it
is missing. When a missing value is present, the bit for that
particular row is set to 1 and no data value is transferred
for that row. Because of this bitmask, even columns with
fixed-width types now have a variable length. As such, every
column is now prefixed with its length to allow the client to
skip past columns without scanning the data or the bitmask.

As we store the bitmask per column, we can leave out the
bitmask for columns that do not have any missing values.
When a column is marked with the NOT NULL flag or database
statistics indicate that a column does not contain missing
values, we do not send a NULL mask. In the result set header,
we notify the client which columns have a NULL mask and
which do not. This allows us to avoid unnecessary overhead
for columns that are known to not contain any missing values.

C
o
lu
m
n

D
a
ta

02000000 00E1F505

4450464B47004F4B00

R
o
w

C
o
u
n
t

04000000

09000000

02

00

N
U
L
L

M
a
sk

C
o
lu
m
n

L
en
g
th

Figure 11: Proposed result set wire format – Post-
greSQL

As PostgreSQL stores data in a row-major format, con-
verting it to a columnar result set format provides some



additional challenges. Because of the null mask, we do not
know the exact size of the columns in advance, even if they
have fixed-length types. To avoid wasting a lot of space when
there are many missing values, we first copy the data of each
column to a temporary buffer as we iterate over the rows.
Once the buffer fills up, we copy the data for each column
to the stream buffer and transfer it to the client.

Another potential performance issue is the access pattern
of copying data in a row-major format to a column-major
format. However, the cost of this random access pattern is
mitigated because the chunks are small and generally fit in
the L3 cache of a CPU.

4.3 Evaluation
To determine how well our protocol performs in the real

world, we evaluate it against the state of the art client pro-
tocols on several real world data sets.

All the experiments are performed on a Linux VM running
Ubuntu 16.04. The VM has 16GB of main memory, and 8
CPU cores available. Both the database and the client run
inside the same VM. The netem utility is used to limit the
network for the slower network speed tests. The VM image,
datasets and benchmark scripts are available online1.

We perform this analysis on the lineitem, acs and ontime

data sets described in Section 3. To present a realistic view of
how our protocol performs with various network limitations,
we test each dataset in three different scenarios.

• Local. The server and client reside on the same ma-
chine, there are no network restrictions.

• LAN Connection. The server and client are con-
nected using a gigabit ethernet connection with 1000
Mb/s throughput and 0.3ms latency.

• WAN Connection. The server and client are con-
nected through an internet connection, the network is
restricted by 100 Mbit/s throughput, 25ms latency and
1.0% uniform random packet loss.

We measure all the systems described in Section 2. In
addition, we measure the implementation of our protocol
in MonetDB (labeled as MonetDB++) and our protocol in
PostgreSQL (labeled as PostgreSQL++). As a baseline, we
include the measurement of how long it takes to transfer
the same amount of data in CSV format using netcat with
three different compression schemes: (1) no compression, (2)
compressed with Snappy, (3) compressed with GZIP. We
perform this experiment using the ODBC driver of each of
the respective database systems, and isolate the wall clock
time it takes to perform result set (de)serialization and data
transfer using the methods described in Section 2.1. The
experiments have a timeout of 1 hour.

In Table 10, the results of the experiment for the lineitem

table are shown. The timings for the different network config-
urations are given in seconds, and the size of the transferred
data is given in gigabyte (GB).
Lineitem. For the lineitem table, we observe that our
uncompressed protocol performs best in the localhost sce-
nario, and our compressed protocol performs the best in the
LAN and WAN scenarios. We note that the implementation
in MonetDB performs better than the implementation in
PostgreSQL. This is because converting from a row-based

1https://github.com/Mytherin/Protocol-Benchmarks

Table 10: Results of transferring the SF10 lineitem
table for different network configurations.

Timings (s)
System TLocal TLAN TWAN Size

L
in

ei
te

m

(Netcat) (9.8) (62.0) (696.5) (7.21)
(Netcat+Sy) (32.3) (32.2) (325.2) (3.55)
(Netcat+GZ) (405.4) (425.1) (405.0) (2.16)
MonetDB++ 10.6 50.3 510.8 5.80
MonetDB++C 15.5 19.9 200.6 2.27
Postgres++ 39.3 46.1 518.8 5.36
Postgres++C 42.4 43.8 229.5 2.53
MySQL 98.8 108.9 662.8 7.44
MySQL+C 380.3 379.4 367.4 2.85
PostgreSQL 205.8 301.1 2108.8 10.4
DB2 166.9 598.4 T 7.32
DBMS X 219.9 282.3 T 6.35
Hive 657.1 948.5 T 8.69
MonetDB 222.4 256.1 1381.5 8.97

representation to a column-based representation requires an
extra copy of all the data, leading to additional costs.

We note that DBMS X, despite its very terse data rep-
resentation, still transfers significantly more data than our
columnar protocol on this dataset. This is because it trans-
fers row headers in addition to the data. Our columnar
representation transfers less data because it does not transfer
any per-row headers. We avoid the NULL mask overhead in
PostgreSQL++ by not transferring a NULL mask for columns
that are marked as NOT NULL, which are all the columns in
the lineitem table. MonetDB++ transfers missing values
as special values, which incurs no additional overhead when
missing values do not occur.

We also see that the timings for MySQL with compression
do not change significantly when network limitations are
introduced. This is because the compression of the data is
interleaved with the sending of the data. As MySQL uses a
very heavy compression method, the time spend compress-
ing the data dominates the data transfer time, even with
a 100Mb/s throughput limitation. However, even though
MySQL uses a much heavier compression algorithm than our
protocol, our compressed protocol transfers less data. This is
because the columnar format that we use compresses better
than the row-based format used by MySQL.

The same effect can be seen for other databases when com-
paring the timings of the localhost scenario with the timings
of the LAN scenario. The performance of our uncompressed
protocol degrades significantly when network limitations are
introduced because it is bound by the network speed. The
other protocols transfer data interleaved with expensive re-
sult set (de)serialization, which leads to them degrading less
when minor network limitations are introduced.

The major exception to this are DBMS X and DB2. They
degrade significantly when even more network limitations
are introduced. This is because they both have explicit
confirmation messages. DB2, especially, degrades heavily
with a worse network connection.
ACS Data. When transferring the ACS data, we again
see that our uncompressed protocol performs best in the
localhost scenario and the compressed protocol performs
best with network limitations.

https://github.com/Mytherin/Protocol-Benchmarks


Table 11: Results of transferring the ACS table for
different network configurations.

Timings (s)
System TLocal TLAN TWAN Size

A
C

S

(Netcat) (7.62) (46.2) (519.1) (5.38)
(Netcat+Sy) (21.2) (22.7) (213.7) (2.23)
(Netcat+GZ) (370.7) (376.3) (372.0) (1.23)
MonetDB++ 11.8 82.7 837.0 9.49
MonetDB++C 22.0 22.4 219.0 2.49
PostgreSQL++ 43.2 72.0 787.9 8.24
PostgreSQL++C 70.6 72.0 192.2 2.17
MySQL 334.9 321.1 507.6 5.78
MySQL+C 601.3 580.4 536.0 1.48
PostgreSQL 277.8 265.1 1455.0 12.5
DB2 252.6 724.5 T 10.3
DBMS X 339.8 538.1 T 6.06
Hive 692.3 723.9 2239.2 9.70
MonetDB 446.5 451.8 961.4 9.63

We can see that MySQL’s text protocol is more efficient
than it was when transferring the lineitem dataset. MySQL
transfers less data than our binary protocol. In the ACS
dataset, the weight columns are four-byte integers, but the
actual values are rather small, typically less than 100. This
favors a text representation of integers, where a number
smaller than 10 only requires two bytes to encode (one byte
for the length field and one for the text character).

We note that PostgreSQL performs particularly poorly
on this dataset. This is because PostgreSQL’ result set
includes a fixed four-byte length for each field. As this dataset
contains mostly integer columns, and integer columns are
only four bytes wide, this approach almost doubles the size
of the dataset. As a result, PostgreSQL’ transfers a very
large amount of bytes for this dataset.

Comparing the two new protocols, MonetDB++ and Post-
greSQL++, we observe that because ACS contains a large
number of NULL values, PostgreSQL++ transfers less data
overall and thus performs better in the WAN scenario.

Table 12: Results of transferring the ontime table
for different network configurations.

Timings (s)
System TLocal TLAN TWAN Size

O
n
ti

m
e

(Netcat) (4.24) (28.0) (310.9) (3.24)
(Netcat+Sy) (6.16) (6.74) (37.0) (0.40)
(Netcat+GZ) (50.0) (51.0) (49.6) (0.18)
MonetDB++ 6.02 30.2 308.2 3.49
MonetDB++C 7.16 7.18 31.3 0.35
PostgreSQL++ 13.2 19.2 213.9 2.24
PostgreSQL++C 14.6 14.1 76.7 0.82
MySQL 100.8 99.0 328.5 3.76
MySQL+C 163.9 167.4 153.6 0.33
PostgreSQL 111.3 102.8 836.7 6.49
DB2 113.2 314.1 3386.8 3.41
DBMS X 149.9 281.1 1858.8 2.29
Hive 1119.1 1161.3 2418.9 5.86
MonetDB 131.6 135.0 734.7 6.92

Ontime Data. As over half the values in this data set are
missing, the bitmask approach of storing missing values stores

the data in this result set very efficiently. As a result, we see
that the PostgreSQL++ protocol transfers significantly less
data than the MonetDB++ protocol. However, we note that
the MonetDB++ protocol compresses significantly better.
We speculate that this is due to the high repetitiveness of
the in-column NULL representation which the compression
method could detect as a recurring pattern and compress
efficiently compared to the rather high-entropy bit patterns
created by the NULL mask in PostgreSQL++;

The MySQL protocol achieves the best compression due
to its use of GZIP. However, it still performs much worse
than both MonetDB++ and PostgreSQL++ on this dataset
because heavy compression still dominates execution time.

For this dataset, we also see that the current PostgreSQL
protocol performs better than on the other datasets. This is
because PostgreSQL saves a lot of space when transferring
missing values as it only transfers a negative field length
for every NULL value. In addition, PostgreSQL’ field length
indicator does not increase the result set size much when
transferring large VARCHAR columns. However, in the WAN
scenario it performs poorly because of the large amount of
bytes transferred.

5. CONCLUSION AND FUTURE WORK
In this paper, we investigated why exporting data from

a database is so expensive. We took an extensive look at
state of the art client protocols, and learned that they suf-
fer from large amounts of per-row overhead and expensive
(de)serialization. These issues make exporting large amounts
of data very costly.

These protocols were designed for a different use case in a
different era, where network layers were unable to guarantee
deliver or order of packets and where OLTP use cases and
row-wise data access dominated. Database query execution
engines have been heavily modified or redesigned to accom-
modate more analytical use cases and increased data volume.
Client protocols have not kept up with those developments.

To solve these issues, we analyzed the design of each of the
client protocols, and noted the deficiencies that make them
unsuitable for transferring large tables. We performed an
in-depth analysis of all these deficiencies, and various design
choices that have to be considered when designing a client
protocol. Based on this analysis, we created our own client
protocol and implemented it in PostgreSQL and MonetDB.
We then evaluated our protocol against the state of the art
protocols on various real-life data sets, and found an order of
magnitude faster performance when exporting large datasets.

5.1 Future Work
In our current protocol, we use a simple heuristic to de-

termine which compression method to use. An optimization
that can be made to our protocol is therefore to use the
network speed as a heuristic for which compression method
to use. Using compression methods that offer degrees of
compression, the cost of the compression can be fine tuned
and dynamically adapted to changing network conditions.

Another area of future research is to use different columnar
compression methods depending on the data distribution
within a column. The compression method could be chosen
either by looking at statistics that the database already has,
or by compressing a sample of the column and looking at
which method achieves the highest compression ratio. Such a
technique could greatly improve compressibility of datasets.



Further performance could be gained by serializing the
result set in parallel. This can be advantageous for paralleliz-
able queries. In these scenarios, the threads can immediately
start serializing the result set to thread-local buffers as they
compute the result without having to wait for the entire
query to finish. However, since writing the data to the socket
still has to happen in a serialized fashion we only expect
performance gains in a limited set of scenarios. For exam-
ple, when result set serialization is expensive due to heavy
compression or when the query is fully parallelizable.

Acknowledgments. This work was funded by the Nether-
lands Organisation for Scientific Research (NWO), project
“Process mining for multi-objective online control” (Raasveldt)
and “Capturing the Laws of Data Nature” (Mühleisen).

6. REFERENCES
[1] D. Abadi, S. Madden, and M. Ferreira. Integrating

Compression and Execution in Column-oriented
Database Systems. In Proceedings of the 2006 ACM
SIGMOD International Conference on Management of
Data, SIGMOD ’06, pages 671–682, New York, NY,
USA, 2006. ACM.

[2] M. Abadi, A. Agarwal, P. Barham, et al. TensorFlow:
Large-scale machine learning on heterogeneous systems,
2015. Software available from tensorflow.org.

[3] M. Armbrust, R. S. Xin, C. Lian, et al. Spark SQL:
Relational Data Processing in Spark. In Proceedings of
the 2015 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’15, pages 1383–1394,
New York, NY, USA, 2015. ACM.

[4] P. Boncz, M. Zukowski, and N. Nes. MonetDB/X100:
Hyper-pipelining query execution. In In CIDR, 2005.

[5] P. A. Boncz, M. L. Kersten, and S. Manegold. Breaking
the Memory Wall in MonetDB. Commun. ACM,
51(12):77–85, Dec. 2008.

[6] U. S. C. Bureau. American Community Survey.
Technical report, 2014.

[7] Y. Collet. LZ4 - Extremely fast compression. Technical
report, 2013.

[8] J. Ellis and L. Ho. JDBC 3.0 Specification. Technical
report, Sun Microsystems, October 2001.

[9] Greenplum Database 4.2. Technical report, EMC
Corporation, 2012.

[10] J. Gailly. gzip: The data compression program.
Technical report, University of Utah, July 1993.

[11] K. Geiger. Inside ODBC. Microsoft Press, 1995.

[12] C. Gibson, K. Katterjohn, Mixter, and Fyodor. Ncat
Reference Guide. Technical report, Nmap project, 2016.

[13] Protocol Buffers: Developer’s Guide. Technical report,
Google, 2016.

[14] Snappy, a fast compressor/decompressor. Technical
report, Google, 2016.

[15] A. Gupta, D. Agarwal, D. Tan, et al. Amazon Redshift
and the Case for Simpler Data Warehouses. In
Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’15,
pages 1917–1923, New York, NY, USA, 2015. ACM.

[16] M. Hall, E. Frank, G. Holmes, et al. The weka data
mining software: An update. SIGKDD Explor. Newsl.,
11(1):10–18, Nov. 2009.

[17] S. Hemminger. Network Emulation with NetEm.
Technical report, Open Source Development Lab, April
2005.

[18] M. Hofmann and R. Klinkenberg. RapidMiner: Data
Mining Use Cases and Business Analytics Applications.
Chapman & Hall/CRC, 2013.

[19] T. Hothorn. CRAN task view: Machine learning, 2017.

[20] A. Lamb, M. Fuller, R. Varadarajan, et al. The Vertica
Analytic Database: C-store 7 Years Later. Proc. VLDB
Endow., 5(12):1790–1801, Aug. 2012.

[21] D. Lemire and L. Boytsov. Decoding billions of integers
per second through vectorization. CoRR,
abs/1209.2137, 2012.

[22] W. McKinney. Data Structures for Statistical
Computing in Python . In S. van der Walt and
J. Millman, editors, Proceedings of the 9th Python in
Science Conference, pages 51 – 56, 2010.

[23] MongoDB Architecture Guide. Technical report,
MongoDB Inc., June 2016.

[24] T. Neumann. Efficiently Compiling Efficient Query
Plans for Modern Hardware. Proc. VLDB Endow.,
4(9):539–550, June 2011.

[25] D. of Transport Statistics. Airline On-Time Statistics
and Delay Causes. Technical report, United States
Department of Transportation, 2016.

[26] F. Pedregosa, G. Varoquaux, A. Gramfort, et al.
Scikit-learn: Machine learning in Python. Journal of
Machine Learning Research, 12:2825–2830, 2011.

[27] J. Postel. Transmission Control Protocol. RFC 793
(Standard), Sept. 1981. Updated by RFCs 1122, 3168,
6093.

[28] A. Prunicki. Apache Thrift. Technical report, Object
Computing, Inc., June 2009.

[29] R Core Team. R: A Language and Environment for
Statistical Computing. R Foundation for Statistical
Computing, Vienna, Austria, 2016.

[30] M. Raasveldt and H. Mühleisen. Vectorized UDFs in
Column-Stores. In Proceedings of the 28th International
Conference on Scientific and Statistical Database
Management, SSDBM ’16, pages 16:1–16:12, New York,
NY, USA, 2016. ACM.

[31] D. Salomon. Data Compression: The Complete
Reference. Springer-Verlag New York, Inc., Secaucus,
NJ, USA, 2006.

[32] M. Stonebraker and G. Kemnitz. The POSTGRES
Next Generation Database Management System.
Commun. ACM, 34(10):78–92, Oct. 1991.

[33] A. Thusoo, J. S. Sarma, N. Jain, et al. Hive - a
petabyte scale data warehouse using Hadoop. 2014
IEEE 30th International Conference on Data
Engineering, 0:996–1005, 2010.

[34] TPC Benchmark H (Decision Support) Standard
Specification. Technical report, Transaction Processing
Performance Council, June 2013.

[35] J. Urbaski. Postgres on the wire. In PGCon 2016, May
2014.

[36] M. Widenius and D. Axmark. MySQL Reference
Manual. O’Reilly & Associates, Inc., Sebastopol, CA,
USA, 1st edition, 2002.

[37] P. C. Zikopoulos and R. B. Melnyk. DB2: The
Complete Reference. McGraw-Hill Companies, January
2001.


	Introduction
	State of the Art
	Overview
	Network Impact
	Result Set Serialization

	Protocol Design Space
	Protocol Design Choices

	Implementation & Results
	MonetDB Implementation
	PostgreSQL Implementation
	Evaluation

	Conclusion and Future Work
	Future Work

	References

